
ista de Revista de Revista ologia Patologia Patologia Propical Tropical Tro

INFORME ANUAL DE LA RED DE MONITOREO/VIGILANCIA DE LA RESISTENCIA A LOS ANTIBIÓTICOS

> Lima - Perú 3 al 4 de diciembre, 2009

Revista de Patologia Tropical

sta de Revista de Revista de Patologia Patologia Patologia Patolo pical Tropical Tropi

A Revista de Patologia Tropical (ISSN 0301-0406) é uma publicação do Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás e órgão oficial da Sociedade Brasileira de Parasitologia. Publica anualmente quatro fascículos mais suplementos temáticos.

The Revista de Patologia Tropical (ISSN 0301-0406) is a journal published by Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás and official organ of the Sociedade Brasileira de Parasitologia. It publishes annualy four numbers and thematic supplements.

ASSINATURAS/SUBSCRIPTIONS

Brasil: R\$ 50,00 (assinatura anual)

Foreign: 50,00 US\$ (annual subscription)

CORRESPONDÊNCIA/MAIL

Toda correspondência deve ser enviada ao endereço abaixo:

All mail should be sent to the address below:

Revista de Patologia Tropical Caixa Postal 131 74001-970 – Goiânia – Goiás – Brasil

Telefone: (0xx62) 3209-6107

Fax: (0xx62) 3209-6303 e 3209-6171

E-mail: revista@iptsp.ufg.br

Home-page: http://www.iptsp.ufg.br/ e http://www.revistas.ufg.br

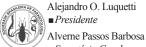
INDEXAÇÃO/INDEXATION

Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) CAB Abstracts, Referativnyi Zhurnal (Rússia) (VINITI)

Universidade Federal de Goiás

Edward Madureira Brasil

■ Reitor


Eriberto Francisco Bevilácqua Marin

■ Vice-Reitor

Regina Maria Bringel Martins

■Diretora do Instituto de Patologia Tropical e Saúde Pública

Sociedade Brasileira de Parasitologia

Alejandro O. Luquetti

■ Presidente

■Secretário Geral

Amália Verônica M. da Silva

■ Primeira Tesoureira

REVISTA DE PATOLOGIA TROPICAL

Editor: Ruy de Souza Lino Junior Editores Eméritos: William Barbosa

Sydney Schmidt

Co-editor: Alejandro Luquetti Ostermayer

Editores Associados: Ana Lúcia Sampaio Sgambatti de Andrade

André Kipnis

Dulcinéa Maria Barbosa Campos Ledice Inácia de Araújo Pereira Mariane Martins de Araújo Stefani

Consultores Científicos:

Alberto Gianella, Santa Cruz, BOL Ana Flisser, México, MEX Antonieta Rojas de Arias, Asunción, PRY Antonio D'Alessandro, Buenos Aires, ARG Carlos Eduardo Tosta, Brasília, BRA Carlos Graeff-Teixeira, Porto Alegre, BRA Celina Maria Turchi Martelli, Goiânia, BRA Christine Aznar, Cayenne, GUF Dirceu Greco, Belo Horizonte, BRA Edgar Marcelino de Carvalho, Salvador, BRA Edward Felix da Silva, Belo Horizonte, BRA Elisa de Ponce, Tegucigalpa, HND Fábio Zicker, Génève, CHE Fausto Edmundo Lima Pereira, Vitória, BRA Felipe Guhl, Bogotá, COL Francisco José Dutra Souto, Cuiabá, BRA Gilberto Fontes, Divinópolis, BRA Jack Frenkel, New Mexico, USA Joaquim C. de Almeida Netto, Goiânia, BRA Joffre Marcondes de Rezende, Goiânia, BRA

José Maria Soares Barata, São Paulo, BRA José Mauro Peralta, Rio de Janeiro, BRA José Roberto Mineo, Uberlândia, BRA Léa Camillo Coura, Rio de Janeiro, BRA Lúcia Martins Teixeira, Rio de Janeiro, BRA Marcelo Simão Ferreira, Uberlândia, BRA Maria do Rosario R. Silva, Goiânia, BRA Maurício Gomes Pereira, Brasília, BRA Michael A. Miles, London, GBR Miriam Lorca, Santiago, CHL Néstor Añez, Mérida, VEN Pedro Paulo Chieffi, São Paulo, BRA Ricardo Ishak, Belém, BRA Ricardo Negroni, Buenos Aires, ARG Roberto Salvatella, Montevideo, URY Roberto Chuit, Buenos Aires, ARG Silvano Wendel, São Paulo, BRA Temístocles Sanchez, Lima, PER Yves Carlier, Brussels, BEL

Projeto Gráfico e Capa: Laerte Araújo Pereira - CEGRAF Arte Final de Capa: Joelson Santos de Souza Composição e Formatação: Joelson Santos de Souza

REVISTA DE PATOLOGIA TROPICAL / Instituto de Patologia Tropical – UFG, v. 1, n. 1, 1972- . Goiânia: Instituto de Patologia Tropical, Sociedade Brasileira de Parasitologia, 1972- . V. 40, jan./jun. 2011. (suplemento 1)

ISSN 0301-0406 ISSN da versão on line 1980-8178 I. Universidade Federal de Goiás – Instituto de Patologia Tropical e Saúde Pública. II. Sociedade Brasileira de Parasitologia.

CDU 616.9 (05)

Fascículo financiado por: Pan American Health Organization

Tiragem: versão exclusiva on line

Data de circulação: 12 de dezembro de 2011

SUMÁRIO / CONTENTS

INFORME OPS / PAHO REPORT

INFORME ANUAL DE LA RED DE MONITOREO / VIGILANCIA DE LA RESISTENCIA A LOS ANTIBIÓTICOS – 2008 (ANNUAL REPORT OF THE NETWORK FOR MONITORING/SURVEILLANCE OF ANTIBIOTIC RESISTANCE – 2008)

Lima, Perú 3 al 4 de diciembre, 2009 (Lima, Peru, December 3rd-4th, 2009)

Glosário de términos, siglas y símbolos (Definitions and abbreviatures)

R	esumen (Abstract)	1
1	Introducción (Introduction)	2
2	Capítulo Regional (Regional chapter)	4
3	Información de los países: sistemas de vigilancia, garantía o resultado de la vigilancia (Information from countries: reports on	surveillance
	systems, quality assurance and results of the surveillance)	9
	Argentina	
	Bolivia	
	Brasil	
	Canadá	
	Chile	
	Colombia	
	Costa Rica	
	Cuba	
	Ecuador	
	Estados Unidos de América	
	El Salvador	53
	Guatemala	
	Honduras	
	México	
	Nicaragua	
	Panama	72
	Paraguay	76
	Perú	81
	Republica Dominicana	86
	Uruguay	90
	Venezuela	94

4	Resultados de la evaluación del desempeño de las instituciones coordinadoras de las redes nacionales (Results of the performance evaluation by the Coordinating Institutions of the National Network)
	4.1 Instituto Nacional de Enfermedades Infecciosas (INEI), Dr. Carlos Malbrán, Ministerio de Salud, Buenos Aires, Argentina. Bacterias Entéricas y no entéricas (National Institute for Infectious Diseases. Ministry of Health, Argentina. Enteric and non-enteric bacteria)99
5	Conclusiones y recomendaciones de la Reunión Anual de la Red de Monitoreo/ Vigilancia de la Resistencia a los Antibióticos (Conclusions and reccomendations of the annual meeting of the network for monitoring/surveillance of antibiotic resistance)
6	Lista de participantes (List of participants)
1	ANEXOS / ANNEX
Ι	Vigilancia de la resistencia: especies a vigilar y antibióticos a utilizar (Surveillance of resistance: species to look for, and antibiotics to use)107
II	Resistencias naturales a los antibióticos de las principales especies bacterianas de interés médico (Natural resistance to antibiotics of the main species of bacteria of medical importance)112

TÉRMINOS, SIGLAS Y SIGNOS

La información proporcionada corresponde a 2008, y es sobre aislamientos humanos, excepto cuando se mencione lo contrario. Para determinar la susceptibilidad de los microorganismos a los antibióticos, se utilizó el método de difusión en agar (técnica de Kirby Bauer). En el caso de algunos microorganismos fastidiosos se realizó la prueba de concentración inhibitoria mínima (CIM), según la capacidad técnica de los laboratorios participantes de la red.

Para garantizar la calidad de los datos, se hace la evaluación continua del desempeño de los laboratorios participantes; los errores detectados en las pruebas de susceptibilidad a los antibióticos se expresan como:

- Menor: aislamiento de sensibilidad intermedia, que se informa como sensible o resistente, o un aislamiento sensible o resistente, que se informa como de sensibilidad intermedia.
- Grave: un aislamiento sensible que se informa como resistente.
- Muy grave: un aislamiento resistente que se informa como sensible.

Siglas y símbolos:

- S: sensible;
- I: resistencia intermedia,
- R: resistente
- PC: punto de corte
- NT: no testado

Para la aproximación se usó la siguiente regla:

- Cuando la resistencia sea de menos de 1%, se incluye el decimal sin aproximar (Ej. 0,3%). Los valores superiores al 1% se han aproximado al entero según las siguientes especificaciones internacionales:
- 1. Un resultado cuya décima supere 0,5 se debe aproximar al entero inmediatamente superior. Ej. 7,7% se lleva a 8%.
- 2. Un resultado cuya décima sea inferior a 0,5, se aproximará al entero inmediatamente inferior. Ej. 7,3% se redondea a 7%.
- 3. Un resultado cuyo decimal sea exactamente 0,5, se debe aproximar de acuerdo al valor entero precedente de que se trate (siempre se aproxima a número par):
 - a) Si el valor entero precedente al primer decimal es par, se aproxima hacia abajo. Ej. 8,5 se lleva a 8
 - b) Si el valor entero precedente al primer decimal es impar, se redondea hacia arriba. Ej. 7,5 se lleva a 8.

Hay que resaltar también, que cuando el número de aislamientos fue menor a 30, está expresado en base al número total, colocando en forma de fracción el número de cepas R o I como numerador y como denominador el número total de cepas testadas.

SIGLAS DE ANTIBIÓTICOS, SEGÚN WHONET

Acido nalidíxico (NAL); Amikacina (AMK); Amoxicilina (AMX); Amoxicilina-Ac. Clavulánico (AMC); Ampicilina (AMP); Ampicilina-sulbactam (SAM); Azitromicina (AZM); Azlocilina (AZL); Aztreonam (ATM); Cefaclor (CEC); Cefaloridina (CEF); Cefalotina (CEP); Cefalosporinas de tercera generación (C3G); Cefazolina (CFZ); Cefepime (FEP); Cefoperazona (CFP); Cefotaxima (CTX); Cefotaxima-Ac. Clavulánico (CTC); Ceftazidima (CAZ); Cefoxitina (FOX); Ceftriaxona (CRO); Cefuroxima (CXM); Ciprofloxacina (CIP); Claritromicina (CLR); Clindamicina (CLI); Cloranfenicol (CHL); Colistina (COL); Doxiciclina (DOX); Enrofloxacina (ENR); Eritromicina (ERI); Estreptomicina (STR); Estreptomicina de alta carga (STH); Fosfomicina (FOS); Furazolidona (FRZ); Gentamicina (GEN); Gentamicina de alta carga (GEH); Kanamicina (KAN); Imipenem (IPM); Levofloxacina (LVX); Lincomicina (LIN); Lomefloxacina (LOM); Meropenem (MEM); Minociclina (MNO); Nitrofurantoína (NIT); Norfloxacina (NOR); Oxacilina (OXA); Ofloxacina (OFX); Penicilina (PEN); Pefloxacina (PEF); Piperacilina (PIP); Piperacilina-tazobactam (TZP); Rifampicina (RIF); Sulfatiazol (SLF); Sulfisoxazol (SOX); Teicoplanina (TEC); Tetraciclina (TCY); Ticarcilina (TIC); Trimetoprima+sulfametoxazol (SXT); Tobramicina (TOB); Vancomicina (VAN).

Excepto cuando se menciona lo contrario, los puntos de corte (PC) para las pruebas de sensibilidad por dilución son:

Streptococcus pneumonie PC en µg/ml

PEN	CTX/CRO*	CHL	RIF	SXT	TCY
S ≤ 0,06	S ≤ 0,5	S ≤ 4	S ≤ 1	$S \le 0.5/9.5$	S ≤ 2
$R \ge 2$	R≥ 2	$R \ge 8$	R≥ 4	R≥ 4/76	R≥ 8

NCCLS 2006 (CTX/CRO*: puntos de corte para meningitis) (CTX/CRO puntos de corte para no meningitis: $S \le 1$; $R \ge 4$)

Neisseria meningitidis PC en µg/ml

AMP	PEN	CTX/CRO	CIP	CHL	RIF
S ≤ 0,12	$S \le 0.06$	$S \le 0.12$	S ≤ 0,03	S ≤ 2	S ≤ 0,5
$R \ge 2$	$R \ge 0.5$		$R \ge 0.12$	$R \ge 8$	$R \ge 2$

NCCLS 2006

INFORME ANUAL

DE LA RED DE MONITOREO/VIGILANCIA DE LA RESISTENCIA A LOS ANTIBIÓTICOS ¹

Organización Panamericana de la Salud²

RESUMEN

La reunión anual de la Red de Vigilancia de la Resistencia a los Antibióticos se llevó a cabo en Lima, Perú los días 3 y 4 de diciembre de 2009 con la participación de representantes de 21 países de la región.

El primer día se inició con el acto protocolario en el cual el Dr. Mario Valcárcel Representante OMS-OPS Perú, a.i. brindó palabras de bienvenida. Seguidamente se presentaron los objetivos de la reunión a cargo de la Dra. Pilar Ramón-Pardo, asesora de resistencia antimicrobiana y control de infecciones de la de la Organización Panamericana de la Salud en Washington, EEUU y se seleccionaron el presidente y los relatores de la reunión. Para el cargo de presidente fue seleccionada Rosa Sacsaquispe, delegada de Perú y para el cargo de relatores fueron seleccionados Alejandra Corso de Argentina, Antonieta Jiménez de Costa Rica y Jorge Matheu de Guatemala.

Antes de comenzar la primera mesa redonda, tuvo lugar una sesión introductoria a cargo de la Dra. Pilar Ramón-Pardo que presentó los objetivos y prioridades de la red de vigilancia de la resistencia a los antimicrobianos para el año 2010.

A continuación, la primera mesa redonda estuvo dedicada al **análisis de la credibilidad de los resultados del antibiograma**. La delegada de Perú, Rosa Sacsaquispe presentó la situación de su país en cuanto a los resultados del seguimiento de las normas del CLSI por los laboratorios pertenecientes a la red, antes y después de las evaluaciones realizadas en los países. La delegada de Ecuador, Jeannette Zurita presentó un documento sobre las normas y requisitos para la obtención de muestras y su transporte. La delegada de CAREC, Lisa Indar, presentó datos acerca de la situación actual y del futuro del programa de vigilancia de las resistencias en la Región del Caribe y la Dra. Lai-King Ng presentó los resultados del control de calidad para *Salmonella* y las acciones

- 1. La Reunión Anual de los países participantes en la Red de Monitoreo/Vigilancia de la resistencia a los antibióticos fue realizada en Lima, Perú del 3 al 4 de diciembre, 2009. Al final de este informe se incluyen las recomendaciones surgidas de ese evento, así como la lista de participantes en el mismo. Este documento fué reproducido por solicitación de la OPS, para una mayor divulgación, y fue publicado originalmente en el documento OPS/HDM/CD/A/541/09, con modificaciones editoriales autorizadas. Para información adicional se ruega dirigirse a la Dra. Pilar Ramón-Pardo, Asesora de la Vigilancia de Resistencia Antimicrobiana y Control de Infecciones, Organización Panamericana de la Salud, Washington, DC, USA.
- 2. Este documento no es una publicación oficial de la Organización Panamericana de la Salud (OPS); sin embargo todos sus derechos están reservados. Este documento puede ser citado o utilizado para reproducción o traducción, parcialmente o en su totalidad; no obstante, no puede ser usado para la venta ni con propósitos comerciales. Las opiniones expresadas en este documento son responsabilidad exclusiva de los autores.

encaminadas a mejorarlo. Por último y para cerrar la jornada se presentaron los avances del software WHONET como herramienta para la vigilancia de las resistencias a cargo del Dr. John Stelling. El segundo día de la reunión, se inició con la actualización sobre SIREVA II y con las conclusiones de su reunión anual a cargo del Dr. Jean Marc Gasbastou.

Seguidamente, dio comienzo la segunda mesa redonda sobre la Implementación de la vigilancia, que contó con el Dr. Gabriel Schmunis como moderador. La sesión se inició con una presentación acerca de la vigilancia molecular del SAMR a cargo del Lic. Jorge Matheu. Seguidamente, la Dra. Teresa Camou presentó la descripción de un brote de S. aureus en Uruguay, el Dr. Marcelo Galas expuso su experiencia en cuanto a la detección fenotípica de carbapenemasas de importancia clínica en Pseudomonas aeruginosa, Acinetobacter y Enterobacterias y la Dra. Lai King Ng realizó una presentación en la que expuso su punto de vista en cuanto a la Región de la Américas dentro del panorama global. Tras una discusión sobre las medidas para mejorar la vigilancia de cada país, la Dra. Pilar Ramón-Pardo presentó el cumplimiento de las recomendaciones de la reunión anterior y Marta Tato presentó algunos datos del análisis de los resultados obtenidos por la red en los últimos años. La tercera y última mesa redonda estuvo dedicada a la Evaluación de la calidad y contó con el Dr. Gustavo Chamorro como moderador. En primer lugar, la Dra. Alejandra Corso de uno de los laboratorios coordinadores de las evaluaciones del desempeño, el INEI/Malbran de Argentina, presentó los resultados del Programa Latinoamericano de control de calidad en bacteriología. A continuación representantes de varios países presentaron datos acerca del control de calidad de la red para el diagnóstico de las infecciones nosocomiales, así como del papel de los respectivos Laboratorios Nacionales de Referencia en la supervisión de los miembros de la red. Las presentaciones corrieron a cargo de los doctores: Daniel Marcano (delegado de Venezuela), Irma Hernández Monroy (delegada de México), Antonieta Jiménez (delegada de Costa Rica), María Margarita Ramírez (delegada de Cuba) y María Elena Realpe (delegada de Colombia). A continuación se discutieron los resultados presentados en cuanto al cumplimiento de los objetivos y la posibilidad de introducir cambios.

En la última sesión, los relatores y la presidenta de la reunión presentaron las conclusiones y recomendaciones de la reunión, que fueron verificadas y corroboradas una a una para luego su posterior aprobación por todos los presentes. Una vez finalizada la aprobación de las conclusiones y recomendaciones se dio fin al evento con la entrega de certificados y agradecimientos por parte de OPS y los representantes de Perú.

PALABRAS CLAVE: Antibióticos. Resistencia microbiana. Redes de vigilancia. Informe anual de OPAS.

1 INTRODUCCIÓN

El informe anual de la vigilancia de la resistencia a los antibióticos de los países participantes de la Región de las Américas se discute y analiza con el fin de tomar medidas para el perfeccionamiento continuo de la calidad de los datos, y su utilidad en la orientación a los clínicos para el uso racional de los antibióticos.

Inicialmente la vigilancia estaba dirigida a bacterias entéricas: *Salmonella*, *Shigella* y *Vibrio cholerae*, desde 1997. A partir de 2000, se incluyeron otras especies que se encuentran en la comunidad y en los hospitales.

La información suministrada por cada país es un consolidado de la información obtenida de diversos centros asistenciales y, en ocasiones, áreas geográficas diferentes, por lo que su valor epidemiológico es limitado. Sin embargo, no puede subestimarse la importancia de esta información como indicador de

tendencia ni como justificación técnica de la necesidad de implementar medidas para la prevención y control de la resistencia a los antimicrobianos.

Cuadro 1. Prevención y control de la resistencia a los antibióticos: especies objeto de vigilancia

Hospitalarias	Comunitarias
Enterococcus spp.	Salmonella spp.
Klebsiella pneumoniae	Shigella spp.
Acinetobacter spp.	Vibrio cholerae
Pseudomonas aeruginosa	Escherichia coli
Staphylococcus aureus	Neisseria meningitidis
Escherichia coli	Streptococcus pneumoniae
Enterobacter spp.	Haemophilus influenzae
	Campylobacter spp.
	Neiseria gonorrhoeae
	Streptococcus β hemolítico

Los laboratorios coordinadores de la red tienen como función la gestión de la garantía de calidad de los datos de la identificación de las especies objeto de vigilancia y de la detección de la susceptibilidad a los antimicrobianos.

Los países participantes, como condición previa a su participación en la red, se comprometieron a contar con un centro que se desempeñaría como coordinador de la red nacional, la cual estaría constituida por instituciones centinelas. En la mayoría de los países la institución coordinadora es el centro nacional de referencia especializado en el tema de la red, que tiene como función:

- 1. Organizar y coordinar el programa de vigilancia de la susceptibilidad a los antimicrobianos de los agentes patógenos de importancia en salud pública;
- 2. Servir como institución de referencia y contrarreferencia, lo cual consiste en confirmar los diagnósticos, realizar estudios complementarios y aclarar toda duda que surja de las actividades que realizan los participantes nacionales de la red; organizar y llevar a cabo la gestión de calidad (control de calidad interno, auditoría y evaluación externa del desempeño) para garantizar la calidad de los diagnósticos y la determinación de la susceptibilidad a los antimicrobianos. Esto incluye el dictado de normas para garantía de calidad, la supervisión para asegurar que estas normas se cumplen, la distribución de cepas de la *American Type Culture Collection (ATCC)* para control de calidad del antibiograma y la ejecución de programas de evaluación del desempeño para las instituciones participantes de la red:
- 3. Estandarizar las técnicas de diagnóstico, serotipificación y susceptibilidad a los antimicrobianos;
- 4. Capacitar a los técnicos y profesionales de las instituciones participantes de la red;
- 5. Organizar y mantener un banco de cepas; y

6. Consolidar periódicamente la información provista por las instituciones centinelas, analizarla y diseminarla.

A su vez las instituciones centinelas deben:

- 1. Realizar el control y mantenimiento periódico del equipamiento;
- 2. Cumplir con las normas de bioseguridad;
- Seguir las normas de control de calidad, incluidas las del *Instituto de Estándares* de *Laboratorios Clínicos* (CLSI), para la realización de antibiogramas por el método de Kirby Bauer, incluyendo el uso periódico de las cepas de ATCC; y
- 4. Diseminar los hallazgos.

Considerando que la mayoría de los tratamientos administrados son empíricos, la diseminación local de la información sobre el patrón de resistencia de los microorganismos objeto de vigilancia es fundamental para el uso racional de los antibióticos.

La evaluación externa anual del desempeño de las instituciones coordinadoras nacionales (centros nacionales de referencia) está a cargo del Laboratorio Nacional de Patógenos Entéricos, Canadá, mediante un envío anual de muestras desconocidas de *Salmonella*, *Shigella* y *Vibrio cholerae*. Además, el Instituto Nacional de Enfermedades Infecciosas, del ANLIS "Dr. C. G. Malbrán" de Argentina, envía un panel de 10 cepas entéricas y no entéricas, desconocidas, dos veces al año a los integrantes de la red.

2 CAPÍTULO REGIONAL

CÓLERA EN LA REGIÓN DE LAS AMÉRICAS

El cólera es una enfermedad intestinal causada por la ingestión de *Vibrio cholerae*, presente en aguas y alimentos contaminados por heces. En su forma más grave el cólera se caracteriza por una diarrea acuosa aguda de aparición súbita que puede ser mortal debido a la grave deshidratación que causa. La reposición inmediata de líquidos y las medidas de sostén reducen la mortalidad. A los casos graves se les pueden administrar antibióticos apropiados para reducir la duración de la diarrea y el volumen de las pérdidas hídricas, así como para acortar el periodo de excreción de patógenos por las heces.

V. cholerae presenta alrededor de 200 serogrupos. Se dividen entre los que se aglutinan en el antisuero frente al antígeno del grupo O1 (*V. cholerae* O1) y los que no lo hacen (*V. cholerae* no O1). Aunque algunas cepas de *V. cholerae* no O1 causan brotes esporádicos de diarrea, los serogrupos O1 y más recientemente el O139 en el subcontinente Indio son la causa exclusiva del cólera epidémico. A su vez, el serogrupo O1 presenta dos biotipos, el Clásico y El Tor, cada uno de los cuales se subdivide en tres serotipos: el Inaba, el Ogawa y Hikojima.

La historia reciente del cólera se ha caracterizado por brotes epidémicos graves. En 1991 la pandemia del cólera alcanzó Perú y se propagó a casi toda América del Sur y Central, y a México. La cepa epidémica pertenecía al serogrupo O1, biotipo El Tor.

En Haití, los primeros casos del brote epidémico de cólera aparecieron a finales de 2010 en una zona rural del departamento de Artibonito. Desde entonces y hasta finales de enero de 2011 la epidemia de cólera se ha extendido a lo largo del país, así como a la Republica Dominicana. El número de casos notificados a finales de enero ascendía a 216.276 casos en Haití, con un 55,3% de hospitalizaciones y una tasa global de letalidad del 1,9%. El número de casos en la Republica Dominicana ascendía a 336. (datos recogidos en la Alerta Epidemiológica con la actualización semanal sobre la situación del cólera SE 4 de 2011). Los datos de laboratorio muestran que la cepa circulante pertenece al serogrupo O1, biotipo El Tor, serotipo Ogawa. Estos aislamientos presentaron sensibilidad a tetraciclina, doxiciclina, kanamicina, sensibilidad intermedia a cloranfenicol y ampicilina, resistencia a sulfometoxazol, trimetoprima-sulfometoxazol, furazolidona, ácido nalidíxico y estreptomicina; y sensibilidad disminuida a ciprofloxacino. En vista a estos resultados, los agentes antimicrobianos de primera línea recomendados por la OPS para el tratamiento del cólera son: doxiciclina (para adultos) y azitromicina o eritromicina (para embarazadas y niños). Cómo fármacos de segunda línea recomiendan ciprofloxacino o azitromicina para adultos o ciprofloxacino o doxiciclina para niños.

Aprovechando que *V. cholerae* se encuentra incluido entre los patógenos objeto de vigilancia de La Red de Monitoreo y Vigilancia de las Resistencia a los Antibióticos, se pretende comparar los resultados de las resistencias durante la epidemia de Haití con los generados a lo largo de los últimos años por la Red.

Desde el año 2000 hasta el presente informe se han notificado a la Red un total de 2.095 aislados de *V. cholerae*, repartidos entre 2000 y 2005, ya que a partir del año 2006 no se ha informado ningún aislamiento por parte de ningún país. Los países que incluyeron este patógeno en el informe de las resistencias fueron Brasil, Cuba, El Salvador, México y Perú (Figura 1).

La distribución de serogrupos de los aislados de *V. cholerae* notificadas entre 2000 y 2005 se muestra en la tabla 1 y en la figura 2. 179 aislados (8,5%) correspondieron al serogrupo O1 y 1.561 aislados (74,5%) al serogrupo no O1. Durante los años 2000, 2001 y 2002, 355 aislados (17%) fueron informados sin serotipificar. A partir del año 2003 todos los aislados se informaron con el serogrupo correspodiente. El mayor número de aislados pertenecientes al serogrupo O1 se informaron en el año 2000. A partir de entonces, se informaron unos pocos casos en 2001 (10 casos), 2004 (7 casos) y 2005 (6 casos). Sin embargo, los aislados pertenecientes al serogrupo no O1 se notificaron a lo largo de todos los años, con excepción del año 2002.

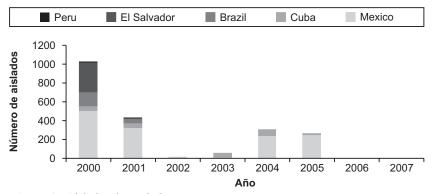
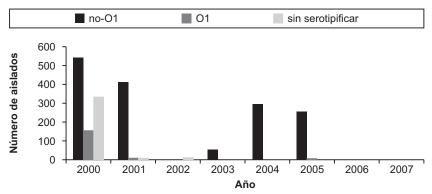



Figura 1. Aislados de V. cholerae por país y por año

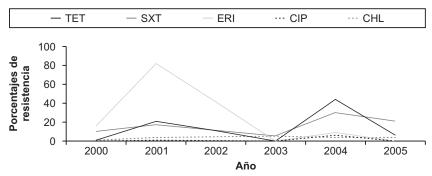
Figura 2. Serogrupos de *V. cholerae* por año (2000-2006)

En la tabla 1 se muestra el resumen de los porcentajes de resistencia de los aislados de *V. cholerae* informados a la Red durante los años 2000 al 2005.

Los porcentajes de resistencia de *V. cholerae* O1 a todos los antibióticos informados en los años 2000 y 2001, que incluían tetraciclina, cotrimoxazol, eritromicina, ciprofloxacino y cloranfenicol fueron bajos (menores al 5%). Esta uniformidad se rompe en los años 2004 y 2005 en los que se observan mayores porcentajes de resistencia a tetraciclina, cotrimoxazol y cloranfenicol. Sin embargo, el bajo número de aislados de *V. cholerae* O1 en estos dos últimos años (7 aislados en 2004 y 6 en 2005) no permite confirmar ninguna tendencia.

Los porcentajes de resistencia a ciprofloxacino y cloranfenicol de los aislados de *V. cholerae* pertenecientes al serogrupo no O1 han permanecidos siempre bajos (entre 0 y 6%), mientras que los porcentajes de resistencia a tetraciclina, cotrimoxazol y eritromicina han variado a lo largo de los años. En el año 2001, el 82% de los aislados de *V. cholerae* no O1 presentaron resistencia a eritromicina. En los años siguientes, los porcentajes disminuyeron a 9% en 2004, y a

0% en 2003 y 2005. Para tetraciclina, los porcentajes de resistencia variaron del 1% en el año 2000 al 44% en el año 2004. La evolución de los porcentajes de resistencia de los aislados de *V. cholerae* no O1 se muestra en la figura 3.


Tabla 1. Porcentajes de resistencia a los antibióticos de los aislados de *V. cholerae* notificados en los años 2000 al 2005

A ~ -	Número total	V. cholerae	Número de	Por	centajes c	le aislado	s resistent	tes*
Año	de aislados	serogrupo	aislados (%)	TET	SXT	ERI	CIP	CHL
		O1	156 (15.2)	3 (156)	1 (156)	4 (55)	1 (156)	0 (156)
2000	1030	no-O1	541 (52.5)	1 (541)	10 (541)	16 (445)	0 (491)	1 (541)
		sin serotipo	333 (32.3)	0 (27)	27 (37)	52 (27)	0 (37)	27 (37)
		O1	10 (2.3)	1 (10)	0 (10)	4(10)	0 (10)	0 (10)
2001	432	no-O1	412 (95.4)	21 (412)	17 (412)	82 (412)	1 (412)	4 (412)
		sin serotipo	10 (2.3)	NT	74 (10)	NT	0 (10)	100 (10)
		O1	0	-	-	-	-	-
2002	12	no-O1	0	-	-	-	-	-
		sin serotipo	12 (100)	0 (12)	25 (12)	100 (12)	0 (12)	0 (12)
		O1	0	-	-	-	-	-
2003	55	no-O1	55 (100)	0 (5)	5 (55)	0 (55)	0 (55)	5 (55)
		sin serotipo	0	-	-	-	-	-
		O1	7 (2.3)	43 (7)	14 (7)	0 (7)	0 (7)	14 (7)
2004	304	no-O1	297 (97.7)	44 (232)	30 (297)	9 (297)	6 (297)	4 (297)
		sin serotipo	0	-	-	-	-	-
		O1	6 (2.3)	0 (6)	17 (6)	NT	NT	0 (6)
2005	262	no-O1	256 (97.7)	6 (243)	21 (256)	0 (13)	0 (13)	4 (256)
		sin serotipo	0	-	-	-	-	-

^{*}No todos los países informan los mimos antibióticos. Por lo tanto, entre paréntesis se indica el número total de aislados de los que se tienen datos del estudio de sensibilidad y sobre el cual está calculado el porcentaje de aislados resistentes

NT: no testado

TET: tetraciclina; SXT: cotrimoxazol; ERI: eritromicina; CIP: ciprofloxacino; CHL: cloranfenicol

Figura 3. Evolución de los porcentajes de resistencia a tetraciclina (TET), cotrimoxazol (SXT), eritromicina (ERI), ciprofloxacino (CIP) y cloranfenicol (CHL) de los aislados de *V. cholerae* no O1 desde el año 2000 al 2005

Debido a que la resistencia a los antimicrobianos ha ido aumentando en muchas partes del mundo es importante hacer estudios de sensibilidad. Conocer la epidemiologia de las resistencias a los antibióticos de un determinado micrrorganismo y su evolución a lo largo de los años puede ser útil para establecer recomendaciones de tratamiento en situaciones de brotes o epidemias.

3 INFORMACIÓN DE LOS PAÍSES

ARGENTINA

SISTEMA DE VIGILANCIA

La red de vigilancia de Argentina está constituida por 69 centros distribuidos por todo el país, Figura ARG 1. El laboratorio coordinador de la red de vigilancia de la resistencia a los antibióticos es el Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. Carlos G. Malbrán".

	Província	Laboratório					
1	Catamarca	Htal. de Niños					
'	Calamarca	Htal. San Juan Bautista					
2	Chaco	Htal. J. Perrando					
~	Criaco	Htal. 4 de Junio					
3	Chubut	Htal. Zonal Esquel					
3	Criubut	Htal. Reg. Comodoro Rivadavia					
		Htal. Infantil Municipal					
		Htal. Rawson					
4	Cordoba	Clínica Velez Sarsfield					
4	Cordoba	Clínica Reina Fabiola					
		Htal. de Niños					
		Htal. de Vila María					
5	Corrientes	Htal. Juan Pablo II					
5	Cornentes	Htal. Llano					
6	Entre Rios	Htal. San Martín					
7	Entre Rios	Htal. Felipe Heras					
	Баллааа	Htal. de la Madre y el Niño					
′	Formosa	Htal. Central de Formosa					
_	to do a c	Htal. Pablo Soria					
8	Jujuy	Htal. de Niños					
_	L - D	Htal. Gob. Centeno					
9	La Pampa	Htal. Lucio Molas					
10	La Rioja	Htal. Vera Barros					
11	Mendoza	Htal. Ped. Dr. Humbeto Notti					
''	IVIETIUUZA	Htal. Central de Mendoza					
12	Misiones	Htal. Prov. De Ped.					
12	MISIONES	Htal. SAMIC El Dorado					
13	Marianan	Htal. Provincial					
13	Neuquen	Htal. Heller					
14	Rio Negro	Htal. Regional Cipolletti					
14	Rio Negio	Htal. Regional Bariloche					
15	Salta	Htal. Materno Infantil					
15	Salla	Htal. San Vicente de Paul					
16	Can luan	Htal. Marcial Quiroga					
10	San Juan	Htal. Rawson					
17	San Luis	Policlinico Central Villa Mercedes					
17	San Luis	Policlinico Central de Mendoza					
10	Canta Caus	Htal. Reg. R. Gallegos					
18	Santa Cruz	Htal. de Caleta Olívia					

		20
	Província	Laboratório
		Fac. CS. Bioquímicas
		Htal. Alasia
19	Santa Fe	Htal. Español
		Htal. V. J. Vilela
		Htal. Cullen
20	Tierre Del Fuere	Htal. Regional de R .Grande
20	Tierra Del Fuego	Htal. Regional de Ushuaia
		C. de Microbiologia Medica
21	Tucuman	Htal. Del Niño Jesus
		Htal. Padilla
		Htal. Posadas
		Htal. Sor M. Ludovica
	Buenos Aires	Htal. Jara
		Htal. Pena
22		Htal. Eva Peron (ex Castex)
		Htal. Evita de Lanus
		Htal. San Juan de Dios
		Htal. Piñyero
		Htal. Austral
		Htal. Garrahan
		Htal. Gutierrez
		Htal. Argerich
		Fund. Favaloro
	Buenos Aires	Htal. Muñiz
•	(Capital Federal)	FLENI
		Htal. Piñero
		Sanatorio Mitre
		Htal. Fernandez

Figura ARG 1. Red de laboratorios WHONET – Argentina, 2007

GARANTÍA DE CALIDAD

Evaluación externa del desempeño de los participantes de la Red-WHONET

El INEI-ANLIS "Dr. C. G. Malbrán" coordina el Programa Nacional de Control de Calidad en Bacteriología del que participan obligatoriamente los 70 centros centinela que integran la red para la Vigilancia de la Resistencia a los Antimicrobianos WHONET-Argentina. A través de este Programa se envían 3 cepas dos veces al año y se da un tiempo máximo de respuesta de 30 días corridos a partir de la recepción del envío. Durante el año 2008 se envió sólo un panel de cepas para evaluación del desempeño. Las características de las cepas enviadas se indican en el Cuadro ARG 1.

Cuadro ARG 1. Especies enviadas para evaluación del desempeño, 2008

S. haemolyticus meticilino resistente portador de los genes erm y lnuA de resistencia a macrólidos y	
lincosamidas	
E. meningoseptica	
K. oxytoca productora de betalactamasa de espectro extendido PER-2	
K. pneumoniae productora de betalactamasa de espectro extendido CTX-M-2	
K pneumonige productora de β-lactamasa plasmídica tipo AMP-C perteneciente al grupo CMV-2	\neg

Cuadro ARG 2. Evaluación del desempeño de las Instituciones participantes

Tipo de prueba y resultado	Conco	rdancia
ripo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº =209)		
Género y especie correctos	180	86
Género correcto	2	1
Género correcto y especie incorrecta	16	8
Género incorrecto	11	5
Tamaño del halo del antibiograma (Nº =753)		
Dentro del rango de referencia	670	89
Fuera del rango de referencia	83	11
Interpretación del resultado del antibiograma (Nº 802)*		
Sensible	288	100
Resistente	458	96.8
Intermedio	35	83.3
Errores (N° =21)		
Menor	7	0.9
Grave	0	0
Muy Grave	14	1.7

^{*}De las 802 pruebas realizadas, 288 deberían haber sido informadas como S, 473 como R y 42 como I.

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro ARG 3. Salmonella spp.

Drogodomoio	No		IΡ	N/	A L	Al	MР	C3G	FC	OS	CI	IL.	SX	ζT
Procedencia	IN	I	R	I	R	I	R	R	I	R	I	R	I	R
Comunitario	396	0.3	0	2	4	2	19	1	0	0.7	1	5	0.3	5

Cuadro ARG 4. Shigella spp.

	Especie Nº	N TO	С	IP	N/	4L	Al	MР	C3G	FC	OS	SΣ	ΚΤ	N	IT
			I	R	I	R	I	R	R	I	R	I	R	I	R
	S. sonnei	400	0	0	0	0	0	19	0.4	0	0.6	1	70	0.3	0.3
	S. flexneri	1797	0.1	0.1	0.1	0.7	0.3	82	0.2	0	0.2	1	36	0.1	0.2

Cuadro ARG 5. Escherichia coli (Infección urinaria baja no complicada)

Nº	Edad	Nº	Al	MР	Cl	EΡ	CX	M*	GF	EN	AN	ЛK	C	ΙP	SΣ	ΥT	N	IT
IN	(años)	IN IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	≤14	482	2	76	19	25	12	0	0	9	3	1	0.7	7	1	46	1	2
M	15 a 60	477	4	65	21	23	6	11	0	16	4	2	0.9	29	0.9	41	2	4
	>60	345	4	68	23	27	25	5	2	23	4	5	0.6	49	3	43	4	6
	≤14	2757	3	64	19	15	16	2	0.1	5	0	2	0.4	3	0.8	39	1	0.8
F	15 a 60	5651	5	53	20	14	15	3	0.3	6	1	1	0.6	12	1	32	1	1
	>60	1054	5	62	22	22	21	6	0.7	15	1	2	1	33	2	39	2	2

^{*}Cefuroxima acetil

Cuadro ARG 6. Neisseria meningitidis (Solo por CIM)

No	Al	MР	PE	EN	CTX	CI	I L	C	IP	R	IH.		CY
IN	I	R	I	R	S*	I	R	I	R	I	R	I	R
145	58	0	46	0	100	0	0	0	0	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro ARG 7. Staphylococcus aureus

No	O	ΚA	FOX	VAN*	E	RI	C	LI	TI	EC	Mi	NC	C	ΙP	SΣ	ΥT	GF	EN	R	IF
IN	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2221	0.4	45	43	100	2	23	1	10	0.3	0.1	0.5	0.1	2	11	0.2	3	0.6	17	1	4

^{*}Por antibiograma solo existe categoría S

Cuadro ARG 8. Staphylococcus coagulasa negativo

No	FOX	VAN*1	EF		CI	LI^2	TE	C^3	MN	10^4	C	IP	SΣ	ΚT	GI	EN	RI	
IN	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1027	49	100	4	46	2	17	0.8	0	1	1	3	14	2	12	3	13	1	10

^{*}Por antibiograma solo existe categoría S; ¹N= 404, ²N= 384, ³N=357, ⁴N=387, ⁵N=396

Cuadro ARG 9. *Neisseria gonorrhoeae* - Programa Nacional de Vigilancia de la Sensibilidad Antimicrobiana de Gonococo (PROVSAG) - Red Nacional de Infecciones de Transmisión Sexual

N°	PE	EN		amasa CEFIN)	CTX	C	IP	TO	CY
	I	R	POS	NEG	S*	I	R	I	R
295	66	34	20	80	100	1	21	51	32

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro ARG 10a. Streptococcus pneumoniae (aislamientos invasivos) - Red WHONET - Método Difusión

Edad	Nº	OXA	E	RI	C	LI	SZ	ΚT	R	IF	TO	CY	LV	/X	VA	λN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R
<6 años	296	30	4	19	0	5	8	28	0,61	11	43	83	0	0	0	0
≥6 años	458	19	2	7	0	2	6	23	02	$0,9^{2}$	54	6^{4}	0	0	0	0

^{*} Resistente ≤19 mm; ¹N= 154, ²N= 223, ³N=132, ⁴N=179

Cuadro ARG 10b. *Streptococcus pneumoniae* (aislamientos invasivos) - Red SIREVA II - Método de Dilución

Edad	N ₀	OXA	PE	$N^{1,2}$	AN	$1X^1$	CT	$X^{1,3}$	ME	M^1	El	RI^1	SX	T^1	CH	IL^1	OF	L^1	TC	Y^1	VA	N^1
Edad	IN	R*	I	R	Ι	R	I	R	I	R	Ι	R	I	R	I	R	I	R	Ι	R	I	R
<6 años	251	27		24	0	0	5	0	7	0.4	0	23	24	19	0	2	0	0	0	9	0	0

^{*} Resistente ≤19 mm

1CIM (CLSI 2008)

2Según punto de corte de meningitis (S \leq 0,5 y R \geq 2 µg/ml). Aplicando puntos de corte de neumonía (S \leq 1 y R \geq 4 µg/ml): R: 0 %, I: 0 %. Aplicando puntos de corte de PEN V via oral (S \leq 0,06 y R \geq 2 µg/ml): R: 5 %, I: 18 %

3Según punto de corte de meningitis (S \leq 0,5 y R \geq 2 µg/ml). Aplicando puntos de corte de No-meningitis (S \leq 1 y R \geq 4 µg/ml): R: 0 %, I: 0 %.

Cuadro ARG 11a. Haemophilus influenzae (aislamientos invasivos)

Edad	Nº	Al	MР	SA	M	CI	EC	CX	ΙM	CTX	AZM	CIP	SZ	ΚT	CI	I L	ß-lact	amasa
Edad	IN	I	R	I	R	I	R	I	R	S*	S*	S*	I	R	I	R	POS	NEG
<6 años	25	0	22	0	0	5	0	0	0	100	100	100	0	22	0	0	18	82
≥6 años	19	0	12	0	0	0	0	0	0	100	100	100	0	24	0	0	25	75

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro ARG 11b. *Haemophilus influenzae* (aislamientos No-invasivos)

				_		_		_					_		_		_			
E J. J	Nº	Al	MΡ	SA	M	Cl	EC	C	M	CTX	AZM	CIP	S	KΤ	CI	I L	N/	٩L	ß-lacta	amasa
Edad	IN.	I	R	I	R	I	R	I	R	S*	S*	S*	I	R	I	R	I	R	POS	NEG
<6 años	172	1	23	0	0	1	1	0	0	100	100	100	1	26	1	0	0	1	21	79
≥6 años	496	2	21	0	1	2	2	1	0	100	100	100	0	24	2	1	0	0	22	78

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro ARG 12. Streptococcus \(\beta\)-hemolítico

N10	PEN	C	LI	E	RI	LV	/X
IN	S*	I	R	I	R	I	R
2468	100	0.7	1	2	4	0.1	0.9

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de origen hospitalario

Cuadro ARG 13. Escherichia coli

N 10	Al	MР	AN	ИС	Cl	EΡ	TZ		C3G	IP	M	MI	EM	N/	٩L	C	IΡ	SΣ	ΚT	NI	T^1
IN	Ι	R	I	R	I	R	Ι	R	R	I	R	I	R	I	R	I	R	I	R	I	R
1873	3	73	22	23	19	39	8	4	22	0	0	0	0	5	54	1	37	2	46	2	4

¹N=751

Cuadro ARG 14. Klebsiella pneumoniae

Vio	AN	ИС	C)	EP	TZ	ZP	C3G	FC)X	IP	M	MI	EΜ	N/	٩L	C	IΡ	SΣ	ζT	N	T^1
IN	I	R	I	R	Ι	R	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1356	18	50	4	67	26	24	62	6	6	0	0	0	0	5	54	5	47	6	48	11	59

¹N=405

Cuadro ARG 15. Enterobacter cloacae

Vio	T	ZΡ	C	ГΧ	CA	١Z	FE	P1	IP	M	MI	ΞM	N/	٩L	C	IP	SΣ	ΚT
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
407	10	31	7	48	1	50	11	16	0	0	0	0	6	42	6	35	2	45

 $^{^{1}}N = 82$

Cuadro ARG 16. Staphylococcus aureus

N10	O	ΧA	FOX	VAN*	El	RI	C.	LI	TI	EC	Mî	ON	C	ΙP	SΣ	ΚT	GI	EN	R	IF
IN	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
6058	0	52	52	100	3	34	1	23	0	0	0	0	3	25	0	5	1	30	2	6

^{*}Por antibiograma solo existe categoría S

Cuadro ARG 17. Staphylococcus spp. coagulasa negativa

Nio	FOX	VAN*1	EI	RI^2	CI	LI^2	TE	\mathbb{C}^3	MN	Ю4	C	IΡ	SΣ	ΚT	GI	EN	RI	F5
IN .	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2210	78	100	2	68	2	41	0.8	0.1	0.4	0.5	8	35	2	42	5	51	0.9	28

^{*}Por antibiograma solo existe categoría S

 $^{{}^{1}}N=404$, ${}^{2}N=384$, ${}^{3}N=357$, ${}^{4}N=387$, ${}^{5}N=396$

Cuadro ARG 18. *Enterococcus faecalis, Enterococcus faecium y Enterococcus* spp. (no identificados)

Especie	Nº	AN	1P*	VA	ΛN	TI	EC	GI	EH	Sī	ГН
Especie	IN	I	R	I	R	I	R	I	R	I	R
E. faecalis	1695	0	0	3	1	0.1	0.7	2	35	11	241
E. faecium	335	0	95	0	59	7	51	62	562	32	732
Enterococcus spp.	521	0	29	1	18	3	15	13	493	13	473

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro ARG 19. Acinetobacter spp.

Nº	SA	M	T	ZP	CA	٩Z	FI	ΞP	IP	M	MI	EΜ	GI	ΞN	С	IP	SΣ	KΤ	AN	ИΚ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2216	20	58	6	85	5	83	12	77	2	69	2	71	3	75	1	89	1	88	9	70

Cuadro ARG 20. Pseudomonas aeruginosa

Nio	P	IΡ	T	ZΡ	CA	٩Z	IP	Μ	MI	ΞM	A	ZT	Gl	EN	AN	ИΚ	FI	ΞP	С	IΡ	C	L^{1}
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R
1328	-	37	-	27	9	20	4	26	6	24	29	18	2	39	4	27	11	13	2	44	1	0

¹Resultado según método por difusión

 $^{{}^{1}}N=981$, ${}^{2}N=240$, ${}^{3}N=340$

BOLIVIA

SISTEMA DE VIGILANCIA

El Laboratorio de Referencia Nacional en Bacteriología Clínica (LRNBC), cuenta actualmente con 30 laboratorios centinela distribuidos por todo el país, que cumplen con la Vigilancia de la Resistencia en patógenos comunitarios como intrahospitalarios. Así mismo la red de 94 laboratorios de bacteriología del país participa del Programa de Evaluación Externa del desempeño. Los laboratorios participantes desarrollan protocolos de control de calidad interno con cepas ATCC proporcionadas anualmente por el laboratorio de referencia nacional.

D	epartamento	Laboratorio
		Hosp. Obrero N° 1
		Hosp. de Clinicas Universitario
		Hosp. La Paz
		Hosp. Municipal Boliviano Holandes
		SELADIS
1	La Paz	Clinica Caja Petrolera
		Hosp Militar (COSSMIL)
		Lab. La Paz
		Laboratorio Illimani
		Hospital Arco Iris
		Instituto Nacional deTorax
		Hosp. Materno Infantil
		Escuela Técnica de Salud
		Hospital IGBJ
2	Cochabamba	Hosp. Albina Patiño
		Seguro Social Universitario
		Hospital brero Nº 2
		Hosp. del niño "Manuel Ortis Suarez"
		Hosp. Universitario San Juan de Dios
3	Santa Cruz	CENETROP
		Clínica Caja Petrolera
		Hosp. Obrero N° 3
		Hosp. IGBJ
4	Chuquisaca	Hosp. Universitario Santa Bárbara
		Hosp. Jaime Mendoza
		Hosp. Daniel Bracamonte
5	Potosí	Seguro Social Universitario
		Policlínico 10 de noviembre
6	Oruro	Hospital Obrero Nº 4
7	Beni	Hosp. Materno Infantil

Figura BOL 1. Red de laboratorios centinela - Bolivia, 2008

GARANTIA DE CALIDAD

Durante el año 2008 se realizaron dos evaluaciones externas del desempeño, con el envio de 6 cepas desconocidas a cada laboratotio, se dio un plazo de 30 dias para responder a partir de la recepcion del panel de cepas. En el primer semestre respondieron en el tiempo requerido 25 de 30 laboaratorios, en el segundo respondieron 23 de los 30 laboaratorios que conforman la red centinela.

Cuadro BOL 1. Especies enviadas para evaluación del desempeño

Primer Semestre	Segundo Sementre
Citrobacter amanolaticus	Klebsiella oxytoca
Shewanella algae	Pseudomonas stutzeri
Morganella morganii	Streptococcus pneumoniae

Ti d	CONCOR	DANCIA
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº= 140)		
Género y especie correctos	44	31,4
Género correcto	20	14,3
Género correcto y especie incorrecta	17	12,1
Genero incorrecto	59	42,1
Tamaño del Halo del antibiograma (Nº = 444)		
Dentro del rango de referencia	331	74
Fuera del rango de referencia	113	25
Interpretación del resultado del Antibiograma*		
Sensible	191	93
Resistente	244	91
Intermedio	9	0
Errores ($N^o = 444$)	Discor	dancia
Menor	9	2
Grave	28	6
Muy Grave	11	2,5

^{*}De las 444 pruebas realizadas deberían haber sido informadas como sensibles 177; resistentes 267; y ninguno como intermedio

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro BOL 1. Salmonella, por serotipos

Serotipo	Nº	C	IP	N/	4L	Al	MР	('	ГΧ	CI	HL		SXT
Seroupo	IN .	I	R	I	R	I	R	I	R	I	R	I	R
Salmonella spp.	123	0.8	19	12	26	9	42	0.8	10	4	9	7	30
S. Typhi	33	0	3	0	15	0	30	0	6	0	5	3	21

Cuadro BOL 2. Shigella spp.

N10		IP	N/	A L	Al	MР	("	ГΧ	CI	I L	SX	ζT
IN	I	R	I	R	I	R	I	R	I	R	I	R
215	0	6	4	14	3	47	0.5	3	2	12	3	46

Cuadro BOL 3. Escherichia coli (infeccion urinaria baja no complicada)

No	Al	MP	Cl	EΡ	GI	EN	SΣ	ΚT		IT	N(OR	N/	AL.	C	ГΧ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
6107	2	70	4	31	2	30	2	72	5	10	4	45	2	54	5	12

Cuadro BOL 4. Staphylococcus aureus

No	O2	ΧA	VA	ΛN	El	RI	C	LI	TO	CY	CI	IL	C	IP	GI	
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2291	1	24	0	0	4	17	3	10	7	16	2	8	4	21	2	9

Cuadro BOL 5. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	EN	СТ	X^1	E	RI	C	LI	SZ	ΚT	CI	I L	VAN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	S**
< 5 años	27	8/27	4/27	5/27	2/27	0	0	2/27	0	0	1/6	14/27	0	0	100
> 5 años	6	2/6	0	0	0	0	0	1/6	0	1/6	0	2/6	0	0	100

^{*} Resistente < 19mm

Cuadro BOL 6. Haemophilus influenzae (aislamientos invasivos)

Edad	NIO	Al	MР	CTX	SX	ΥT	CI	-IL
Edad	IN	I	R	S*	I	R	I	R
< 6 años	10	0	0	100	0	10	0	0

^{**}Solo existe categoria S, en caso de un aislamiento no Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de origen hospitalario

Cuadro BOL 7. Escherichia coli

Nº	Al	MΡ	Cl	EΡ	. ()	ГΧ	N/	AL.	SZ		N	ΙT	N()R	Gl	EN
IN	I	R	I	R	I*	R	I	R	I	R	I	R	I	R	I	R
2904	2	92	9	68	5	31	4	70	2	74	3	23	2	60	2	38

^{*}Solo en caso de que sean BLEE +

Cuadro BOL 8. Klebsiella pneumoniae

Nº	SA	M	C	ГΧ	('/	١Z	IP	M		HL	C	IΡ	GI	EN	AN	ЛK
IN	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R
1014	2	33	4	50	1	23	1	4	3	38	3	42	2	44	3	25

^{*}Solo en caso de que sean BLEE +

¹Solo por CIM

^{**}Solo existe categoria S, en caso de un aislamiento no Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro BOL 9. Enterobacter spp.

	No.	('	ГΧ		٩Z	IP	M	CI	I L	C	IP	GI	EN	AN	ЛΚ
	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R
ſ	665	4	57	2	36	1	3	9	41	3	49	1	46	3	28

Cuadro BOL 10. Staphylococcus aureus

No	O	ΚA	VA	N *	El		C	LI	TC	CY	CI	IL	C	IP	GI	EN
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1930	2	55	0	0	10	31	11	20	6	32	6	25	5	46	3	40

^{*}Solo por CIM

Cuadro BOL 11. Enterococcus spp.

Nº	Al	MР	VA	ΛN	GI	EΗ	C.	IΡ	TC	CY	CI	-IL
	I	R	I	R	I	R	I	R	I	R	I	R
321	5	34	12	1	10	37	11	55	17	46	6	28

Cuadro BOL 12. Acinetobacter baumannii

Nº	SA	M		٩Z	FI	ΞP	IP	M	GI	EN		IP
	I	R	I	R	I	R	I	R	I	R	I	R
516	3	22	2	71	1	21	1	4	2	79	1	74

Cuadro BOL 13. Pseudomonas aeruginosa

Vio	C	FP	CA	١Z	IP	M	GI	EN	C	IP
IN	I	R	I	R	I	R	I	R	I	R
691	2	32	3	38	1	26	3	52	2	45

BRASIL

SISTEMA DE VIGILANCIA

En el Brasil, el monitoreo de la resistencia de cepas comunitarias se realiza sistemáticamente en los casos de meningitis y enfermedades entéricas bajo la Coordinación General de Laboratorios de Salud Pública (CGLAB).

La red de laboratorios que participa en la vigilancia de enfermedades entéricas consta actualmente de 26 laboratorios de salud pública, 5 laboratorios públicos de diagnóstico del área animal y 4 facultades pertenecientes a universidades públicas. El laboratorio de referencia nacional para esta red es el Instituto Oswaldo Cruz (FIOCRUZ/RJ).

La red de vigilancia laboratorial de las meningitis está compuesta actualmente por 26 laboratorios de salud pública realizando aislamiento e identificación de meningococos, neumococos y hemófilos. El Laboratorio de Referencia Nacional para esa red es el Instituto Adolfo Lutz (IAL/SP).

La red de vigilancia de resistencia microbiana hospitalaria está ya en proceso gracias a la alianza establecida junto con la Agencia Nacional de Vigilancia Sanitaria (ANVISA) y la Organización Panamericana de la Salud (OPS).

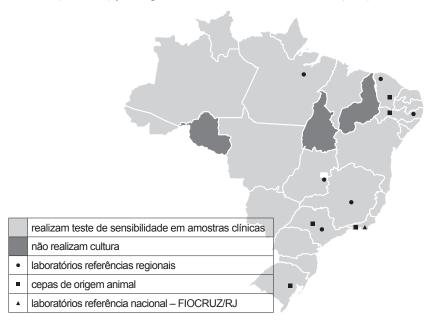


Figura BRA 1. Red de laboratorios participantes para la vigilancia de bacterias entéricas, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro BRA 1. Evaluación del desempeño de las instituciones participantes

	S. pneu	moniae	Нает	ophilus	N. meni	ingitidis
Tipo de prueba y resultado	Conco	rdancia	Conco	rdancia	Conco	rdancia
	Nº	%	Nº	%	Nº	%
Diagnóstico microbiológico						
Género y especie correctos	25	100	5	100	20	100
Género correcto	25	100	5	100	20	100
Género correcto y especie incorrecta	0	0	0	0	0	0
Género incorrecto	0	0	0	0	0	0
Tamaño del halo del antibiograma						
Dentro del rango de referencia	24	96	5	100	12**	86
Fuera del rango de referencia	1	4	0	0	2**	14
Interpretación del resultado del antibiograma						
Sensible						
Resistente						
Intermedio						
Errores						
Menor	1*				2**	
Grave	0		0		0	
Muy Grave	0		0		0	

^{* (}I/R borderline)

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro BRA 2. Salmonella por serotipos*

gti	Nº	ATB**	C	IP	N.	AL	Al	MР	CI	-IL	SZ	ΚT	N	IT	TI	ET
Serotipo	IN-	AlB	I	R	I	R	I	R	I	R	I	R	I	R	I	R
Salmonella spp.	4337	676	0.1	0.3	2	8	2	7	1	3	0.3	5	18	14	0.4	11
S. Typhi	19	19	0	0	6/19	0	0	0	0	0	0	0	0	4/19	3/19	0
S. Enteritidis	1997	683	1	0.1	0.3	4	1	1	1	0.4	0.3	0.4	6	88	0.3	2
S. Typhimurium	1245	181	3	0.6	6	30	2	40	3	10	0.6	14	15	2	0	45
S. Senftenberg	936	49	0	0	18	6	2	8	8	4	0	2	29	16	0	22
S. Minnesota	756	24	0	4	4	4	0	4	0	4	0	0	8	67	0	75
S. Mbandaka	551	63	0	0	5	6	2	8	0	2	0	1	13	24	2	16
S. Schwarzengrund	544	60	5	0	3	28	2	15	2	0	0	3	13	13	3	7
S. Heidelberg	460	24	0	0	0	7	0	42	4	0	0	0	0	17	0	46
S. Agona	377	36	3	0	0	7	0	19	0	6	0	6	17	14	3	8
S. Montevideo	335	20	1/20	0	1/20	1/20	0	0	1/20	0	0	0	2/20	2/20	1/20	1/20
S. Tennesse	295	13	0	0	0	0	1/13	0	0	0	0	0	1/13	1/13	0	0

^{*} Solo cuando no se conozca el serotipo se informara como Salmonella spp.

^{**}ATB: Antibiogramas realizados

Cuadro BRA 3. Neisseria meningitidis (solo por CIM)

N TO	AMP		PEN		CTX/CRO	CHL		CIP		RIF	
IN	I	R	I	R	S*	I	R	I	R	I	R
490	15	0	15	0	100	0	0	0	0	0.2	0

^{*}Solo existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro BRA 4. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N^1		X^1	E	RI	C	LI	SZ	KΤ	CI	IL.	TO		V	λN
(años)	IN .	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6	310	56	7	23	13	3	0	10		8	7	72	0	0	1	11	0	0
≥6	455	26	2	15	6	1	0	44	0	4	8	44	0	1	3	7	0	0

Cuadro BRA 5. Haemophilus influenzae (aislamientos invasivos)

Edad	Nº	Al	MР	SAN		CTX	AZM	CIP	SXT		CI	HL
(años)	IN	I	R	I	R	S*	S*	S*	I	R	I	R
< 6	34	0	15	0	0	100	100	100	0	18	0	6
≥6	27	4	15	0	0	100	100	100	0	26	0	11

^{*}Solo existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de Origen Hospitalario

Cuadro BRA 6. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Especie	Nº	AMP*		VA	ΛN	TE	EC	GI	EH	STH		
		I	R	I	R	I	R	I	R	I	R	
E. faecalis	89	0	1	0	91	0	91	0	79	0	28	
E. faecium	150	0	95	0	94	0	94	0	8	0	87	

^{*}En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

CANADÁ

SISTEMA DE VIGILANCIA

Introducción

El Programa Integrado Canadiense para la Vigilancia de la Resistencia a los Antimicrobianos (CIPARS, por sus siglas en inglés) es un programa nacional iniciado en 2002, en el que se recopila, integra, analiza y comunica información en cuanto al uso de los antimicrobianos y la resistencia en una selección de bacterias de origen humano, animal, ambiental y alimentario de todo Canadá. El programa se basa en varios componentes de vigilancia representativos y unificados metodológicamente, que pueden vincularse para examinar la relación entre el uso de los antimicrobianos en humanos y en animales destinados al consumo. Esta información está destinada a apoyar: 1) la creación de políticas basadas en la ciencia para controlar el uso de antibióticos en los hospitales, la comunidad y el sector agropecuario y así prolongar la efectividad de estos fármacos; y 2) la identificación de las medidas apropiadas para contener la aparición y dispersión de bacterias resistentes entre los animales, los alimentos y las personas.

En el informe del CIPARS de 2007 se presenta una descripción detallada de la integración de los componentes de vigilancia, que puede consultarse en el sitio web de CIPARS: http://www.phac-aspc.gc.ca/cipars-picra/index.html

Métodos

La serotipificación de las cepas de *Salmonella* de origen humano se realizó en diez laboratorios provinciales de salud pública y centros de referencia de enfermedades entéricas. Para la realización de las pruebas de sensibilidad y tipificación, se enviaron al Laboratorio Nacional de Microbiología (LNM), en Winnipeg (Manitoba) las cepas recogidas en la primera quincena de cada mes de las cuatro provincias canadienses más pobladas y todas las cepas recogidas en las provincias con poblaciones más pequeñas. Además se enviaron todas las cepas de *S.* Typhi y *S.* Newport de todas las provincias.

El componente de vigilancia de los alimentos de venta al por menor de CIPARS examina la resistencia a los antibióticos en *Enterococcus*, *Campylobacter*, *Salmonella*, y *E. coli* de muestras de pollo y *E. coli* de muestras porcinas y bovinas. El protocolo de muestreo consiste en el envío muestras con periodicidad semanal en Ontario y Quebec, y bimensual en Saskatchewan y la Columbia Británica. Las muestran se envían de comercios de las diferentes divisiones censales seleccionadas al azar, con el número de muestras de cada división ponderadas por el tamaño de la población. El componente de vigilancia de los mataderos de CIPARS examina la resistencia a los antibióticos en *E. coli* aislados a partir del contenido fecal del

ganado vacuno, cerdos y pollos para asar, y en *Salmonella* de cerdos y pollos para asar, en mataderos registrados a nivel federal en Canadá. Todas las muestras se remitieron para su análisis al Laboratorio para las Zoonosis Transmitidas por los Alimentos de St. Hyacinthe (Quebec).

La vigilancia pasiva de las cepas clínicas de *Salmonella* en animales se realiza principalmente a través de los envíos para diagnóstico veterinario recogidos por los médicos privados, los laboratorios de diagnóstico, los organismos de inspección y otros laboratorios veterinarios. Por consiguiente, las técnicas de recogida y la metodología de aislamiento pueden variar. La mayoría de las cepas de vigilancia pasiva proceden probablemente de animales enfermos que pueden haber recibido tratamiento antibiótico anterior al envío de las muestras. Las cepas de *Salmonella* se envían al Laboratorio para las Zoonosis Transmitidas por los Alimentos de Guelph (Ontario), para su serotipificación, fagotipificación y para el estudio de la resistencia a los antibióticos. Las cepas clínicas de *Salmonella* de Quebec se serotipan en el Laboratorio de Epidemiología y Vigilancia Animal de Quebec.

En todas las cepas de *E. coli, Salmonella, Campylobacter y Enterococcus* de las fuentes descritas anteriormente se estudió la sensibilidad a 15 antibióticos (9 en *Campylobacter*, 17 en *Enterococcus*), mediante el método de microdilución en caldo (Sensititre TM ARIS Automated Microbiology System) y los puntos de corte establecidos (CLSI; M100-S19) o armonizados con NARMS, cuando no se disponía de puntos de corte. En el Programa Integrado Canadiense para los Informes Anuales de la Resistencia a los Antimicrobianos (Canadian Integrated Program for Antimicrobial Resistance Annual Reports) se describen de forma detallada los métodos utilizados para el análisis de las cepas de CIPARS: http://www.phac-aspc.gc.ca/cipars-picra/index.html.

Resultados

En el cuadro 1 se presentan los resúmenes de una selección de los perfiles de resistencia antibiótica de las cepas de *Salmonella* más frecuentes, recogidos por medio de los componentes de vigilancia de CIPARS en humanos, al por menor, en los mataderos y en los animales. En el Informe Anual de CIPARS de 2007, pueden consultarse datos más detallados de las especies animales y de otros microorganismos estudiados (*E. coli spp.* y *Campylobacter*): http://www.phac-aspc.gc.ca/cipars-picra/index.html

De las 3.308 cepas de origen humano analizadas, la prevalencia de la resistencia a 1 o más de los antimicrobianos estudiados varió por serotipos: 126/156 cepas (81%) de *S.* Typhi, 126/319 cepas (40%) de *S.* Heidelberg, 222/658 cepas (34%) de *S.* Typhimurium, 185/910 cepas (20%) de *S.* Enteritidis, 14/127 cepas (11%) de *S.* Newport, 32/39 cepas (82%) de *S.* Paratyphi A, y 1/6 cepas (17%) de *S.* Paratyphi B. El 2% (70/3308) de todas las cepas de origen humano presentaron

resistencia a ceftiofur (Tabla 2). Se identificó resistencia a ceftriaxona en 1 de 910 cepas (0,1%) de *S.* Enteritidis, 1 de 319 cepas (0.3%) de *S.* Heidelberg, 2 de 127 cepas (2%) de *S.* Newport, 1 de 658 cepas (0.2%) de *S.* Typhimurium, y 2 de 1.093 cepas (0.2%) pertenecientes a otros serotipos (ssp. I 4,[5],12:i:- y Saintpaul). Se observó sensibilidad intermedia a ceftriaxona en una serie de serotipos (61/3308, 2%). Dos cepas de *S.* Typhi, tres de *S.* Typhimurium, una de *S.* Blockley, y dos de *S.* Kentucky fueron resistentes a ciprofloxacino; se observó resistencia a ácido nalidíxico en 167/910 (18%) de las cepas de *S.* Enteritidis, 2/319 (0.6%) de las cepas de *S.* Heidelberg, 2/127 (2%) de las cepas de *S.* Newport, 31/39 (79%) de las cepas de *S.* Paratyphi A, 122/156 (78%) de las cepas de *S.* Typhi, 23/658 (3%) de las cepas de *S.* Typhimurium, y 36/1093 (3%) de las cepas de *Salmonella* pertenecientes a otros serotipos.

Entre las cepas procedentes de carne de venta al por menor, la resistencia a ceftiofur fue mayor en las cepas de *E. coli* procedentes de pollo (74/402; 18%), aunque también se detectó en 1/501 (0,2%) de las cepas de *E. coli* procedentes de ternera y en 2/297 (0.7%) de las procedentes de cerdo. La resistencia a ceftiofur también se detectó en 36/346 (10%) de las cepas de *Salmonella* procedentes de carne de pollo y en 1/13 (8%) de las procedentes de carne de cerdo. De las 253 cepas de *Campylobacter* procedentes de pollo, 140 (55%) fueron resistentes a uno o más antibióticos y 13 (5%) fueron resistentes a ciprofloxacino. Ninguna de las 420 cepas de *Enterococcus* procedentes de carne de pollo fueron resistentes a daptomicina, vancomicina, linezolid o tigeciclina, y seis cepas (1%) fueron resistentes a ciprofloxacino. Entre las cepas de *E. faecium* y *Enterococcus* spp. el 72% fueron resistentes a quinupristina-dalfopristina.

Los resultados de la vigilancia en los mataderos mostraron que 112/206 (54%) de las cepas de *Salmonella* procedentes de muestras fecales de pollo y 65/105 (62%) de las de cerdo fueron resistentes a uno o más de los antibióticos estudiados. Se detectó resistencia a ceftiofur en 25/206 (12%) de las cepas de *Salmonella* procedentes de pollos y en 1/105 (1%) de las cepas de origen porcino. *Salmonella* Kentucky fue la serovariedad más frecuente (89/206; 43%) entre los aislados procedentes de pollos de los mataderos mientras que *S.* Derby se identificó como la más común entre los aislados de *Salmonella* de origen porcino (18/105; 17%). En 48/73 (66%) de las cepas de *Campylobacter* procedentes de muestras de ganado vacuno se detectó resistencia a uno o más antibióticos.

Al considerar los resultados de las cepas procedentes de los mataderos y de la venta al por menor en conjunto, se observa que la resistencia a uno o más antibióticos en *E. coli* es mayor entre los aislados procedentes de los pollos (433/582, 74%) y cerdos/ganado porcino (211/390, 54%) que entre los de carne de vaca/ganado vacuno (146/689, 21%). La resistencia a ceftiofur se identificó en 121/582 (21%) de las cepas de *E. coli* procedentes de los pollos, 3/390 (0.8%) de las procedentes de cerdo/ganado porcino y 1/689 (0.2%) de las de carne de vaca/ganado vacuno.

Cuadro CAN 1. Perfiles de resistencia microbiana de las cepas de *Salmonella* más frecuentes aisladas de seres humanos, carne de pollo al por menor, mataderos y vigilancia clínica pasiva en animales, 2007

Serovariedad	AMC-FOX-TIO- AMP(a,b)	AMP-CHL-STR- SLF-TCY (a,c)	AMP-KAN-STR- SLF-TCY (a,d)	AMP-CHL-KAN- STR-SLF-TCY (a,e)
Vigilancia clínica pasiva en cepa	as de origen humano			(-3-7
Enteritidis (n=910)	0%	0%	0.1%	0%
Heidelberg (n=319)	15%	0.3%	0%	0%
Newport (n=127)	3%	4%	2%	2%
Paratyphi A and B (n=45)	0%	4%	0%	0%
Typhi (n=156)	0%	10%	0%	0%
Typhimurium (n=658)	1%	14%	3%	2%
Otros serotipos (n=1093)	0.7%	0.5%	0.4%	0.2%
Todas las especies (N=3308)	2%	4%	0.8%	0.5%
Vigilancia en carne de pollo al p	or menor			
Enteritidis (n=17)	0%	0%	0%	0%
Heidelberg (n=87)	18%	0%	0%	0%
Newport (n=0)	NR(g)	NR	NR	NR
Typhimurium (n=12)	0%	8%	0%	0%
Otros serotipos (n=230)	8%	0%	0%	0%
Todas las especies (N=346)	10%	0.3%	0%	0%
Vigilancia en los mataderos de p	pollo			
Enteritidis (n=20)	0%	0%	0%	0%
Heidelberg (n=37)	19%	0%	0%	0%
Newport (n=0)	NR	NR	NR	NR
Typhimurium (n=11)	18%	27%	0%	0%
Otros serotipos (n=138)	9%	0%	0%	0%
Todas las especies (N=206)	11%	1%	0%	0%
Vigilancia en los mataderos de o	erdos			
Enteritidis (n=0)	NR	NR	NR	NR
Heidelberg (n=3)	0%	0%	0%	0%
Newport (n=0)	NR	NR	NR	NR
Typhimurium (n=32)	0%	66%	13%	13%
Otros serotipos (n=70)	1%	4%	4%	4%
Todas las especies (N=105)	1%	23%	7%	7%
Vigilancia clínica pasiva en cepa	as de origen animal(f)			
Enteritidis (n=43)	0%	0%	0%	0%
Heidelberg (n=32)	31%	0%	0%	0%
Newport (n=0)	NR	NR	NR	NR
Typhimurium (n=174)	7%	43%	24%	20%
Otros serotipos (n=239)	9%	4%	5%	2%
Todas las especies (N=488)	9%	17%	11%	8%

⁽a) AMC = Amoxicilina-ácido clavulánico, AMP = Ampicilina, FOX = Cefoxitina, TIO = Ceftiofur, CHL = Cloranfenicol, STR = Estreptomicina, SSS = Sulfametoxazol, TCY = Tetraciclina, KAN = Kanamicina.

⁽b) Incluye cepas resistentes a AMC-FOX-TIO-AMP, AMC-FOX-TIO-AMP-CHL-STR-SSS-TCY, AMC-FOX-TIO-AMP-KAN-STR-SSS-TCY, and AMC-FOX-TIO-AMP-CHL-KAN-STR-SSS-TCY. (c) Incluye AMP-CHL -STR-SSS-TCY, AMC-FOX-TIO-AMP-CHL-STR-SSS-TCY, AMP-CHL-STR-SSS-TCY-KAN, y AMC-FOX-TIO-AMP-CHL-STR-SSS-TCY-KAN.

⁽d) Incluye AMP-KAN-STR-SSS-TCY, AMC-FOX-TIO-AMP-KAN-STR-SSS-TCY, AMP-KAN-STR-SSS-TCY-CHL, y AMC-FOX-TIO-AMP-KAN-STR-SSS-TCY-CHL.

⁽e) Incluye AMP-CHL-KAN-STR-SSS-TCY, y AMC-FOX-TIO-AMP-CHL-KAN-STR-SSS-TCY.

⁽f) Incluye ganado (n=140), cerdos (n=188), pollos (n=111) and pavos (n=49); (g) NR= No recuperadas

Los datos de vigilancia del CIPARS de 2004 a 2007 revelan una disminución general de resistencia de tipo *ampC* (ampicilina, amoxicilina/ clavulánico, cefoxitina y ceftiofur) en cepas de *S.* Heidelberg de origen humano y de muestras de pollo de Ontario y Québec, las dos únicas provincias donde se hacía vigilancia en venta al por menor en 2003 y 2004. En 2007 se encontró resistencia mediada por *ampC* en Ontario y Québec en 14/74 (19%) de las cepas de *S.* Heidelberg procedentes de carne de pollo de venta al por menor y en 25/157 (16%) de las cepas de origen humano, disminuyendo de 34/62 (55%) y 105/301 (35%), respectivamente, en 2004. En general, en las cepas de *S.* Heidelberg de origen humano en Canadá, la resistencia de tipo *ampC* se observó en 173/556 (31%) y en 47/319 (15%) de las cepas de 2004 y 2007, respectivamente. Comparando las cepas procedentes de carne de pollo de venta al por menor y las de origen humano, la frecuencia de la resistencia de las cepas de *S.* Heidelberg para la mayoría de las resistencias de tipo *ampC* fue por lo general mayor entre las cepas procedentes de pollo que las de origen humano.

Las cepas clínicas de *Salmonella* de origen porcino fueron más frecuentemente resistentes a cinco o más antibióticos que aquellas aisladas de otras especies de animales de consumo humano, con 82/188 (44%) de las cepas, comparado con 11/49 (22%) de las cepas de pavo, 22/140 (16%) de las de ganado vacuno, y 4/111 (4%) de las de pollo. La resistencia a ceftiofur fue más prevalente entre las cepas procedentes de pavo (24/49, 49%). También se detectó resistencia a ceftiofur en 14/111 (13%) de las cepas clínicas de *Salmonella* procedentes de pollo, en 4/188 (2%) de las procedentes de cerdo y en 3/140 (2%) de las procedentes de ganado vacuno.

Cuadro CAN 2. Resistencia a cada fármaco de las cepas de Salmonella a partir de cada componente de vigilancia

-		-											
Fuente	AMC ^(a)	AMP	FOX	TIO	CHL	KAN	NAL	STR	SLF	TCY			
Vigilancia clínica pasiva													
Humana (n=3308)	2%	11%	2%	2%	5%	2%	12%	10%	10%	15%			
Vigilancia en carne al por menor													
Pollos (n=346)	10%	18%	10%	10%	0.3%	0.9%	0%	33%	5%	34%			
Vigilancia en los n	nataderos			-	-	-	-						
Pollos (n=206)	12%	18%	11%	12%	1%	1%	0%	37%	3%	44%			
Cerdos (n=105)	1%	29%	1%	1%	26%	14%	0%	45%	46%	55%			
Vigilancia clínica p	oasiva en	animale	S ^(b)										
Todos (n=488)	9%	35%	9%	9%	20%	17%	0%	32%	35%	41%			

⁽a) AMC = Amoxicilina-ácido clavulánico, AMP = Ampicilina, FOX = Cefoxitina, TIO = Ceftiofur, CHL = Cloranfenicol, KAN = Kanamicina, NAL = ácido nalidíxico, STR = Estreptomicina SSS = Sulfometoxazol. TCY = Tetraciclina

⁽b) Incluye ganado (n=140), cerdos (n=188), pollos (n=111) y pavos (n=49)

Cuadro CAN 3. Interpretaciones de la farmacorresistencia correspondientes a las serovariedades más prevalentes de Salmonella en los seres humanos

Serovariedad	Total	CII	P(a)	N/	A L	Al	MР	AN	ИС	CI	HL	SXT		TCY	
Selovalledad	Total	I	R	I	R	I	R	I	R	I	R	I	R	I	R
Enteritidis	910				167		17	1	1	4	4		6	4	58
Typhimurium	658		3		23		145	81	12	3	106		32	3	176
Heidelberg	319				2		96	25	48	3	2		3	2	22
Typhi	156	1	2		122		32	2			32		32	1	20
Newport	127				2		6		4		6		3		11
Thompson	94						1			1					
ssp I 4,[5],12:i:-	83				3		14		6	1			3		16
Oranienburg	78														1
Hadar	77				5		13	11	1	2			2	1	71
Infantis	63				1		1		1	2			1	1	5
Saintpaul	58				1		8	1	2	1	3		3		12
Agona	45						3	1	1				1		9
Paratyphi B var.	41						2	2			1				1
L(+) tartrate+	41						4				1				1
Paratyphi A	39				31		1				1		1		1
Mbandaka	38														23
Braenderup	37												1		1
ssp I 4,[5],12:b:-	31														3
Stanley	31				1		2				3		3		8
Otros serotipos	424		3		25		18	4		1	12		19	1	52
Total	3308	1	8		383		359	128	76	18	170		110	13	490

⁽a) CIP = Ciprofloxacino, NAL = Ácido Nalidíxico, AMP = Ampicilina, AMC = Amoxicilina-Ácido Clavulánico, CHL = Cloranfenicol, SXT = Sulfametoxazol/Trimetoprim y TCY = Tetraciclina.

Conclusiones

La frecuencia de la resistencia entre las bacterias varió en función del hospedador y del microorganismo. La multirresistencia en numerosas serovariedades de *Salmonella* y la identificación de cepas de origen humano resistentes a ciprofloxacino y cefalosporinas de tercera generación son motivo de especial preocupación, como lo es la presencia de resistencia a fluoroquinolonas en las cepas de *Campylobacter* aisladas de carne de pollo de venta al por menor.

En Canadá, la resistencia a ácido nalidíxico en cepas de *Salmonella* de origen humano se ha observado principalmente en S. Typhi, S. Paratyphi A y B, y S. Enteritidis. Desde el año 2003, se ha observado poca resistencia a ciprofloxacino entre las cepas de *Salmonella* de origen humano (CIMs \geq 4,0 mg/ml), sin embargo, la disminución de la sensibilidad (CIMs \geq 0,125 mg/ml, dato no mostrado) entre las cepas de S. Typhi y Paratyphi A y B se ha incrementado desde 2003.

CIPARS continúa construyendo el marco y las asociaciones para la recolección de datos relevantes y representativos de resistencia a los antimicrobianos a lo largo de la cadena alimentaría. La vigilancia continuada de la resistencia a los antimicrobianos en Canadá, seguirá apoyando el desarrollo de medidas de control y prevención dirigidas y basadas en la evidencia.

CHILE

SISTEMA DE VIGILANCIA

Participan en la red 70 laboratorios de mayor complejidad y 196 de mediana complejidad. La coordinación la realiza el Departamento de Bacteriología, Instituto de Salud Pública, Ministerio de Salud (Figura CHI 1).

		T
	Región	Províncias
1	Tarapacá	SS Arica
	Тагараса	SS Iquique
2	Antofagasta	SS Antofagasta
3	Atacama	SS Atacama
4	Coquimbo	SS Coquimbo
		SS M Central
		SS M Norte
5	Región Metropolitana	SS M Occidente
٦	de Santiago	SS M Oriente
		SS M Sur
		SS M Sur-Oriente
6	O'Higgins	SS L.B.O.
7	Maule	SS Maule
		SS Ñuble
8	Biobío	SS Concepción
0	BIODIO	SS Talcahuano
		SS Biobío
9	Araucanía	SS AraucaniaS
9	Araucama	SS AraucaníaN
		SS Llanchipal
11	Los Lagos	SS Valdivia
' '	Lus Layus	SS Ancud
		SS Osorno
11	Aisén	SS Aysen
12	Magalhães e Antártica	SS Magallanes

Figura CHI 1. Red de laboratorios de Chile, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño de los participantes de la red

En 2008 se realizaron dos evaluaciones en la que participaron 70 laboratorios de mayor complejidad (Tipo A) y 196 laboratorios de mediana

complejidad (Tipo B); se enviaron cuatro cepas por cada evaluación, con un total de 8 cepas enviadas, con un plazo de 15 días hábiles para responder.

Cuadro CHI 1. Especies enviadas para evaluación del desempeño, 2008

Laboratorio Tipo A -	- Mayor complejidad	Laboratorios Tipo B –	Mediana complejidad
1er. semestre	2do. semestre	1er. semestre	2do. semestre
Yersinia enterocolitica	Bordetella bronchiseptica	Pasteurella multocida	Neisseria lactamica
Enterococcus casseliflavus	Neisseria lactamica	Citrobacter freundii	Listeria monocytogenes
Salmonella Senftenberg	Staphylococcus lugdunensis	Shigella boydii	Bordetella bronchiseptica
Morganella morganii	Listeria monocytogenes	Staphylococcus aureus	Enterococcus faecalis

Cuadro CHI 2. Evaluación del desempeño: concordancia entre el laboratorio de referencia y los laboratorios de mayor complejidad, 2008

Tipo de prueba y resultado		ordancia
Tipo de pideoa y fesultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº = 482)		
Género y especie correctos	373	77.4%
Género correcto	48	10.0%
Género correcto y especie incorrecta	43	9.0%
Género incorrecto	18	3.7%
Tamaño del halo del antibiograma (Nº = 896)		
Dentro del rango	653	72.9%
Fuera del rango	243	27.1%
Interpretación del resultado del antibiograma * N= 896		
Sensible	685	99.2%
Resistente	68	49.2%
Intermedio	65	95.50%
Errores (N° = 896)		
Menor	22	2.4%
Grave	7	0.8%
Muy Grave	49	5.5%

^{*}Del total de 896 ensayos,690 deberían haber sido informados como Sensibles, 138 como Resistentes y 68 deberían ser informadas Intermedias

Cuadro CHI 3. Evaluación del desempeño: concordancia entre el laboratorio de referencia y los laboratorios de mediana complejidad, 2008

Tino do musho vi magulto do	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº = 1402)		
Género y especie correctos	746	53.2%
Género correcto	270	19.2%
Género correcto y especie incorrecta	40	2.9%
Género incorrecto	346	24.7%
Tamaño del halo del antibiograma (N° =2736)		
Dentro del Rango	1543	56.4%
Fuera del rango	1193	43.6%
Interpretación del resultado del antibiograma * N= 2736		
Sensible	1606	94.1%
Resistente	844	81.9%
Intermedio		
Errores (N°=2736)		
Menor	57	2.1%
Grave	64	2.3%
Muy Grave	165	6.0%

^{*}Del total de 2736 ensayos, 1706 deberían haber sidoinformados como Sensibles, 1030 como Resistentes y no se enviaron cepas Intermedias.

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro CHI 4. Salmonella spp., aislamientos de origen humano (todos los serotipos)

N	,	С	IΡ	N	4L	Al	MP	AN	ИС	C	ГХ	C	١Z	CI	HL	SΣ	KΤ	N	ΙΤ	Tl	ЕТ	ST	\mathbb{R}^1	FC	ΟX
IN		Ι	R	I	R	Ι	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
110)3	0	0	2	10	0	9	3	1	0	1**	0	1**	0	5	0	4	11	9	1	29	5	4	0.6	0.5

1N=403; * Solo en caso de que sean BLEE-. Resistentes a cefalosporinas; **se confirmaron como BLEE por Microscan (microdilución) y biología molecular

Cuadro CHI 4.1. Salmonella por serotipos más frecuentes de origen humano

Canadin a	Nº	С	IΡ	N/	٩L	Αl	MР	ΑN	ИС	C	ГХ	C	٩Z	CI	IL	SX	ΚT	N	IT	TI	ΞT	FC	ΟX
Serotipo	IN.	Ι	R	Ι	R	Ι	R	Ι	R	I*	R	I*	R	Ι	R	Ι	R	Ι	R	Ι	R	I	R
S. Typhimurium	403	0	0	2	19	0	19	8	0	0	2**	0	2**	0	10	1	8	4	3	4	63	0.7	0.2
S. Enteritidis	206	0	0	1	2	1	2	1	1	0	0	0	0	0	1	0	0	45	34	0	5	0	1
S. Paratyphi B	88	0	0	0	3	0	2	0	2	0	2**	0	2**	0	0	0	2	0	1	0	1	1	1
S. Typhi	63	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	3	2	0	3	0	0
S. Agona	47	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	0	2	2	0	4	0	2

^{*} Solo en caso de que sean BLEE-; **Se confirmo como BLEE por Microscan (microdilución) y biología molecular

Cuadro CHI 4.2. Salmonella spp., aislamientos de origen no humano (todos los serotipos)

Nio	C	IΡ	N/	٩L	AN	MР	AN	ΛС	C.	ГΧ	C	٩Z	CI	HL.	SΣ	ζT	N	ΙΤ	TI	ΞT	FC	X
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R
380	0	0	1	22	0	8	2	3	0	3**		3**	0	6	1	1	3	1	3	25	2	1

^{*} Solo en caso de que sean BLEE-; **Resistencia a cefalosporinas de 3 generación, se confirmó BLEE+ por Microscan (microdilución) y biología molecular. Solamente fueron confirmadas 7 cepas como BLEE (+): 2% las otras 5 cepas 1% no presentaron inhibición con a. clavulánico

Cuadro CHI 4.3. Salmonella por serotipos más frecuentes de origen no humano

Stin	N°	C	IP	N.	AL	Αl	MР	AN	ИС	C	ГХ	C.	ΑZ	CI	IL	SX	ΥT	N	IT	Tl	ET	FC	XC
Serotipo	IN-	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R
S. Typhimurium	71	0	0	1	21	0	24	7	6	0	6**	0	6**	0	8	0	1	4	1	3	83	3	3
S. Grupo B	38	0	3	3	50	0	10	3	5	0	5**	0	5**	0	16	0	5	0	0	3	34	5	0
S. Anatum	33	0	0	3	82	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0
S. Enteritidis	18	0	0	0	2/18	0	0	0	0	0	0	0	0	0	0	0	0	7/18	3/18	0	0	0	0
S. Senftenberg	17	0	0	0	4/17	0	1/17	0	0	0	0	0	0	0	1/17	1/17	0	1/17	0	0	1/17	0	1/17

^{*} Solo en caso de que sean BLEE-

Cuadro CHI 5. Shigella por especies**

Paradia	Nº	С	IP	N/	AL	Al	MР	Al	ИС	C	ГХ	CA	١Z	FC	ΟX	Cl	HL	SΣ	ΚT	N	ΙΤ	T	ET
Especie	IN-	I	R	I	R	I	R	I	R	I*	R	I*	R	I*	R	I	R	I	R	I	R	I	R
S. flexneri	124	0	4	0.8	4	0	66	6	0	0	0	0	0	0	0	0	60	2	60	0	0	14	74
S. sonnei	164	0	0	8	1	0	85	6	0	0	0	0	0	0	0	0	79	7	85	0	0	9	78
S. boydii	26	0	0	0	0	0	3/26	0	0	0	0	0	0	0	0	0	2/26	1/26	8/26	0	0	2/26	23/26
S. dysenteriae	6	0	0	0	0	0	2/6	0	0	0	0	0	0	0	0	0	1/6	0	1/6	0	0	0	1/6
Shigella spp.	9	0	0	3/9	0	0	5/9	0	0	0	0	0	0	0	0	0	5/9	0	6/9	0	0	0	6/9

^{*} Solo en caso de que sean BLEE-

Cuadro CHI 6. Neisseria meningitidis (solo por CIM)

V 10	PE	EN	CRO	CI	I L	C	IP	R	IF
IN	I	R	S*	I	R	I	R	I	R
60	88.3	0	100	0	0	0	0	0	0

Cuadro CHI 7. Staphylococcus aureus**

Vio	O	ΚA	FOX	VAN*	El	RI	C	LI	CI	IL	C	IΡ	SΣ	ΚT	GI	EN	R	IF
IN	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R
51	0	100	100	100	1	57	0	49	0	0	0	8	0	0	0	0	0	0

^{*}Por antibiograma solo existe categoría S

^{**}Resistencia a cefalosporinas de 3 generación, se confirmó BLEE+ por Microscan (microdilución) y biología molecular. Solamente fueron confirmadas 7 cepas como BLEE (+): 2 S. Typhimurium (3%), 2 S. Grupo B (5%), 2 S. Worthington y 1 S. Derby

^{**} Solo cuando no se conozca la especie se informara como Shigella spp.

^{**}Solo se consideró las cepas con diagnostico de S. aureus de origen comunitario

Cuadro CHI 8. Staphylococcus spp. coagulasa negativa

N°	OZ	ΚA	FOX	VAN*	El	RI	C	LI	VA	N^1
IN	I	R	R	S	I	R	I	R	I	R
10	0	6/10	6/10	10/10	0	7/10	1/10	4/10	0	0

^{*}Por antibiograma solo existe categoría S

Cuadro CHI 9. Neisseria gonorrhoeae

Nº	PE	EN	ß-lacta	amasa¹	CRO ³	С	IP	TC	CY	AZ	ZM	SP	T^2
IN	I	R	POS	NEG	S*	I	R	I	R	I	R	I	R
412	74	12	19	81	100	3.9	43.9	57.5	12.4	67.7	12.6	3.1	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro CHI 10. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N^1	СТ	X^1	El	RI	SZ	ΚT	CI	I L	LV	'X	VA	ΙN
(años)	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6	341	49	6	1	4	0	0	46	21	50	0	1	4	1	0	0
≥6	470	22	2	1	1	0	1	13	33	34	0	1	7	0	0	0

^{*} Resistente ≤19 mm

Cuadro CHI 11. Haemophilus influenzae (aislamientos invasivos)

Edad	Nº	Al	MР	SA	M	CI	EC	CX	ζM	CRO	AZM	CIP	SZ	ζT	CI	łL	CI	.R	R	IF
Edad	IN .	I	R	I	R	I	R	I	R	S*	S*	S*	I	R	I	R	I	R	I	R
< 6 años	43	5	23	0	0	5	0	0	0	100	100	100	0	9	2	5	2	0	0	0
≥ 6 años	15	1/15	2/15	0	1/15	1/15	0	0	0	100	100	100	1/15	3/15	0	0	1/15	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro CHI 12. Streptococcus \(\beta\)-hemolítico

No.	PEN	CI	$\mathbf{L}\mathbf{I}^{_{1}}$	E	RI
IN	S*	I	R	I	R
94	100	1	1	1	1

¹ N=2; *Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

¹ Solo por CIM

¹ Por nitrocefin

² SPT o SPE Spectinomicina

³ Realizado por CIM

¹ Solo por CIM

Microorganismos de origen hospitalario

Cuadro CHI 13. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Eamania	Nº	AMP*	VA	ΙN	TI	EC	GI	ΞH	E	RI	R	IF	Cl	\mathbb{P}^1	NI	T^1	TC	1
Especie	IN	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
E. faecalis	161	9	0	9	0	0.7	0.7	44	37	55	37	50	37	43	6	6	5	65
E. faecium	718	99	0.8	96	0	53	0.4	60	0.1	99	0.5	99	8	92	10	80	8	39
E. casseliflavus	2	0	0	2/2	0	0	0	0	2/2	0	1/2	0	NT	NT	NT	NT	NT	NT

^{*}E. faecalis tanto para I como R, confirmar que sea B lactamasa + para informar.El 90% de los Enterococcus que recibe el ISP corresponden a cepas que presentan algún grado de resistencia en el Laboratorio local.

La resistencia a ampicilina en *Enterococcus faecalis* se corroboró con etest a ampicilina y además, se realizó prueba de betalactamasa, resultando algunas positivas y otras negativas, las resistentes con beta lactamasa negativa pueden ser por otros mecanismos

Cuadro CHI 14 Acinetobacter baumannii

Nº	SA	M1	TZ	ZΡ	C	AΖ	FI	ΞP	IP	M	MI	EΜ	C	L1	GI	EN	C	IΡ	SΣ	ΚT	AN	ЛK	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
33	6	61	24	61	0	85	8	46	12	46	18	48	0	9	0	76	0	88	0	6	0	76	54	0

¹Informar sólo cuando se hace CIM

Cuadro CHI 15. Pseudomonas aeruginosa

No	P	IΡ	T	ZΡ	CA	Z1	IP	M	MI	ΞM	A	ZT	Gl	EN	AN	ИΚ	FI	EΡ	C	IΡ	CI	L1
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
40	0	40	0	35	15	32	5	65	15	58	30	45	0	38	10	32	0	45	0	60	32	8

¹N= 107 aislamientos de orina en E. faecalis y N= 384 para Enterococcus faecium

COLOMBIA

SISTEMA DE VIGILANCIA

En 2008, participaron en la red 124 laboratorios de 23 departamentos del país. La coordinación la realiza el Departamento de Bacteriología, del Instituto Nacional de Salud Pública, Ministerio de Salud.

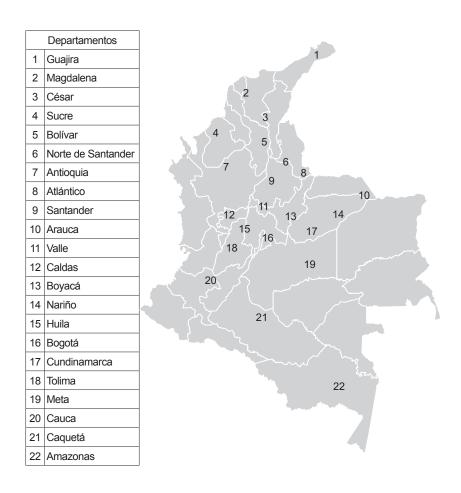


Figura COL 1. Red de laboratorios de Colombia, 2008

Cuadro COL 1. Red de laboratorios

LSP de Bogotá, Hospital	salud. al Universitario, Clínica Asunción.
LSP de Bogotá, Hospital	al Universitario, Clínica Asunción.
Bogotá Hospital Tunal, Hospital Hospital San José de Bog	Simón Bolívar, Hospital la Victoria, Hospital San Blas, bital de Bosa, Hospital de Kennedy, Hospital de Meissen, Fontibon, Hospital Santa Clara, Hospital Militar Central, gotá, Hospital de la isericordia, Clínica Universitaria El undación Cardioinfantil, Inst Nacional de Cancerología, al San Ignacio.
LSP de Boyacá, Hospital Hospital de Guateque, Ho Miraflores, Hospital Reg Vasquez, Hospital de Soa	de Tunja, Hospital de Duitama, Hospital de Garagoa, ospital Regional de Moniquira, Hospital Regional de ional de Sogamoso, E.S. E. Hospital José Cayetano ata, C. Univer Santa Catalina-Tunja, Hospital Regional B Boyacá, Clínica Julio Sandoval, Clínica Especializada de
Bolívar Clínica Madre Bernardita	*
Caldas ESE, Hospital de Riosuci	Santa Sofia, Hospital Infantil de Manizales, Assbasalud io, Hospital de Salamina, Laboratorio Bioclinico s, Laboratorio Bioclinico Manizales.
Caquetá LSP de Caquetá.	
Cauca Hospital San José, Unive Popayán, Hospital Franci	ersidad del Cauca, LSP de Cauca, Lab Especializado – isco de Paula Santander.
	ad UDES, Hospital Rosario Pumarejo
Giradot, Hospital de Uba	Hospital de Facatativa, Hospital de Gacheta, Hospital de tte, Hospital de Villeta, Hospital de Zipaquira, Hospital maritana, Hospital de Fusagasuga, Hospital Pedro León
Guajira Laboratorio de Salud púb	blica
Huila LSP de Huila, Hospital d Federico Lleras (ESSE P	e Neiva C. La Toma (ESSE Policarpo Salavarrieta),C. olicarpo Salav)
Magdalena LSP de Magdalena, Diag	nósticos en salud
Meta Hospital Deptal Villavice	encio, Hospital de Granada
Narino 1	Departamental Pasto Hospital Infantil de Pasto, Hospital Pedro, Hospital San Andrés de Tumaco
Norte de Santander Hospital Erasmo Meoz, I	LSP de Norte de Santander
Risaralda LSP de Risaralda, Hospit	tal San Jorge
Santander H Universitario de Santar Socorro, Hospital de Vélo	nder, LSP de Santander, Hospital de San Gil, Hospital de ez
Tolima de Chaparral, Hospital de	ederico Lleras, Hospital San Francisco, Ibague Hospital e Lérida, Hospital del Líbano, Hospital San Rafael del n Patarroyo (ESSE Policarpo)
Valle Hospital Primitivo Valle Hospital de Palmira, Hos	li Hospital Cañaveralejo, Cali Hospital Universitario, Iglesias, Hospital de Buenaventura, Hospital de Buga, spital de Tulua, LSP de Valle, Hospital Básico Joaquín Paz os, H. Carlos Holmes Trujillo-Cali, H. Cartago, Clínica
	torio del Valle, Fundación Valle de Lilí
Rey David, Cali, Laborat	torio del Valle, Fundación Valle de Lilí San Vicente, Hospital del Sarare(San Ricardo Papuri)
Rey David, Cali, Laborat Arauca LSP de Arauca, Hospital	

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro COL 2. Salmonella por serotipos**

Serotipo	Nº	C	IP	N/	AL	Al	MР	Al	ИС	C	ГХ	CA	٩Z	Cl	IL	SZ	ΚT	TI	ET
Seroupo	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Typhimurium	151	0.6	0	17	7	11	34	6	13	2	0.6	0	3	8	18	0	24	7	75
Enteritidis	134	0	0	5	1	0.7	2	2	0	0	0.7	0.7	0	0	0	0	0.7	4	4
Typhi	52	0	0	6	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salmonella spp.	146	0	0	9	5	0.7	5	5	0.7	1	2	0	0.7	3	0.7	0	6	10	17

^{*} Solo en caso de que sean BLEE-

Cuadro COL 3. Salmonella por serotipos**

Serotipo	Nº	С	IP	N/	AL.	Al	ИP	AN	ИС	C	ГΧ	CA	٩Z	CI	HL .	SZ	ΧT	TI	ET
Serotipo	IN.	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Sonnei	142	0	0	1	0	1	50	26	12	0	0	0	0	2	28	0	95	0	94
Flexneri	81	0	0	0	0	0	89	42	38	0	0	0	0	0	89	0	70	0	96
Shigella spp.	1	0	0	0	0	0	1	NR	NR	0	0	0	0	NR	NR	0	100	NR	NR

^{*} Solo en caso de que sean BLEE-; ** Solo cuando no se conozca el serotipo se informara como Siguella spp.

Cuadro COL 4. Neisseria meningitidis (solo por CIM)

Γ	No	PE	EN	CTX/CRO	CI	HL	С	IP	R	IF
	IN	I	R	S*	I	R	I	R	I	R
Г	22	7/22	0	100	0	0	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro COL 5. Neisseria gonorrhoeae

N10	PI		ß-lact	amasa	CTX/CRO	C	IP	TO	CY
IN	I	R	POS	NEG	S*	I	R	I	R
8	37.5	50	50	50	0	0	0	37.5	50

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro COL 6. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N1	E	RI	SZ	ΥT	Cl	HL .	TC		VA	N
(años)	IN IN	R*	I	R	I	R	I	R	I	R	I	R	I	R
< 6	151	57	13	21	0	7	13	45	0.6	3	1	11	0	0
≥6	174	30	6.4	11.8	0	5.8	4.1	25.2	0	1.8	0.6	16	0	0

^{*} Resistente ≤19 mm

Cuadro COL 7. Haemophilus influenzae (aislamientos invasivos)

F4-4	Nio	Al	ΜР	CX	ζM	SΣ		CI	-IL
Edad	IN-	I	R	I	R	I	R	I	R
< 6 años	9	0	11.1	0	0	0	33.3	0	0
≥ 6 años	3	0	0	0	0	0	66.6	0	0

^{**} Solo cuando no se conozca el serotipo se informara como Salmonella spp.

¹ Solo por CIM

COSTA RICA

Clínico Acorrí

SISTEMA DE VIGILANCIA

El Centro Nacional de Referencia en Bacteriología, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA) coordina la Red Nacional de Laboratorios de Bacteriología de Costa Rica, constituida por más de 65 laboratorios, de los cuales 38 participaron con la referencia de muestras o cepas incluidas en este informe.

Clínica Aserrí
Clínica Bíblica
Clínica Dr. Clorito Picado
Clínica Coronado
Clínica Marcial Fallas
Clínica Moreno Cañas
Clínica Naranjo
Clínica Palmares
Clínica Santa Barbara
Clínica Solón Núñez Frutos
Clínica La Unión
Coopesalud R.L.
Coopesiba
Labin
Servisalud
Instituto de Atención Pediátrica
Patología Forense-Morgue Judicial (OIJ)
Hospital Dr. Blanco Cervantes
Hospital Ciudad Neilly

Hospital Dr. Rafael Ángel Calderón Guardia Hospital Dr. Carlos Luis Valverde Vega Hospital Dr. Enrique Baltodano Hspital Dr. Fernando Escalante Pradilla Hospital Golfito Hospital Guápiles Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Mexico Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio Hospital Dr. Wiliam Allen	
Hospital Dr. Enrique Baltodano Hspital Dr. Fernando Escalante Pradilla Hospital Golfito Hospital Guápiles Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Vicente de Paúl Hospital San Vito Hospital San Vito Hospital Dr. Tony Facio	Hospital Dr. Rafael Ángel Calderón Guardia
Hspital Dr. Fernando Escalante Pradilla Hospital Golfito Hospital Guápiles Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Vicente de Paúl Hospital San Vito Hospital San Vito Hospital Dr. Tony Facio	Hospital Dr. Carlos Luis Valverde Vega
Hospital Golfito Hospital Guápiles Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Dr. Enrique Baltodano
Hospital Guápiles Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hspital Dr. Fernando Escalante Pradilla
Hospital Los Chiles Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Golfito
Hospital Max Peralta Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Guápiles
Hospital Dr. Max Terán Valls Hospital México Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Los Chiles
Hospital México Hospital Mexico Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Max Peralta
Hospital Monseñor Sanabria Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Dr. Max Terán Valls
Hospital Nacional de Niños Dr. Carlos Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital México
Sáenz Herrera Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Monseñor Sanabria
Hospital San Francisco de Asís Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital Nacional de Niños Dr. Carlos
Hospital San Juan de Dios Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Sáenz Herrera
Hospital San Rafael de Alajuela Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital San Francisco de Asís
Hospital San Vicente de Paúl Hospital San Vito Hospital Dr. Tony Facio	Hospital San Juan de Dios
Hospital San Vito Hospital Dr. Tony Facio	Hospital San Rafael de Alajuela
Hospital Dr. Tony Facio	Hospital San Vicente de Paúl
· · · · · · · · · · · · · · · · · · ·	Hospital San Vito
Hospital Dr. Wiliam Allen	Hospital Dr. Tony Facio
	Hospital Dr. Wiliam Allen

Coordinador: Centro Nacional de Referencia en Bacteriología, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA)

Responsable: Dra. Antonieta Jiménez Pearson

Figura COR 1. Red de laboratorios de Costa Rica, 2008

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro COR 2. Salmonella spp por serotipo ** de origen humano

Especie	N°	C	IΡ	N/	٩L	Al	MP	AN	ИС	C	ТХ	CA	٩Z	CF	I L	SZ	ΚT	TO	CY
Especie	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
S. Typhimurium	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3/27	4/27
S. Panama	14	0	0	4/14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. I 1,4,(5),12:i:-	6	0	0	1/6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Sandiego	6	0	0	4/6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Javiana	5	0	0	0	1/5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Saintpaul	5	0	0	0	0	0	2/5	0	0	0	0	0	0	0	0	0	2/5	0	0
Salmonella spp.	30	0	0	5/30	2/30	0	0	0	0	0	0	0	0	1/30	0	0	0	0	0

Esta tabla incluye únicamente los resultados confirmados por Kirby Bauer en el Centro Nacional de Referencia en Bacteriología-INCIENSA

Fuente: Las cepas incluidas en este cuadro fueron referidas por los siguientes laboratorios: Cl. Coronado, Cl. Clorito Picado, Clínica Coopesalud, Cl. Marcial Fallas, Cl. Naranjo, Cl. Palmares, Cl. Solón Núñez, Laboratorio Labin, Cl. Coopesiba, Cl. Santa Bárbara, H. Blanco Cervantes, H. Carlos Luis Valverde Vega, H. Ciudad Neilly, H. Escalante Pradilla, H. Max Peralta, H. Max Terán Walls, H. México, H. Guápiles, H. Calderón Guardia, Cl. Bíblica, H. Enrrique Baltodano, H. Los Chiles, H. Moseñor Sanabria, H. San Rafael de Alajuela, H. San Juan de Dios, H. San Vicente de Paúl, H. San Vito, H. Tony Facio, H. William Allen, Patología Forense-Morgue Judicial (OIJ)

Cuadro COR 3. Shigella por especies

Especie	N°	C	ΙP	N/	٩L	Al	ИP	AN	ИС	CT	ГХ	CA	١Z	CI	IL.	SZ	ζT	Т	Ϋ́
Especie	IN	Ι	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
S. sonnei	166	0	0	0	0	11	73	22	2	0	0	0	0	3	1	0.6	90	0.6	67
S. flexneri	79	0	0	0	3	0	51	33	8	0	0	0	0	0	35	0	39	1	59
S. boydii	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3/4	0	3/4

Esta tabla incluye únicamente los resultados confirmados por Kirby Bauer en el Centro Nacional de Referencia en Bacteriología-INCIENSA

Fuente: Las cepas incluidas en este cuadro fueron referidas por los siguientes laboratorios: Cl. Aserrí, Cl. Bíblica, Cl. Coronado, Clínica Coopesalud, Cl. La Cruz, Cl. Marcial Fallas, Cl. Moreno Cañas, Cl. Naranjo, Cl. Palmares, Cl. Solón Núñez, Cl. La Unión, Cl. Servisalud, Laboratorio Labin, H. Carlos Luis Valverde Vega, H. Ciudad Neilly, H. Enrrique Baltodano, H. Guápiles, H. Golfito, H. Los Chiles, H. Max Peralta, H. Max Terán Walls, H. San Francisco de Asís, H. San Vicente de Paúl, H. San Rafael de Alajuela, H. Tony Facio, H. Moseñor Sanabria, H. San Vito, H. William Allen.

Cuadro COR 4. Neisseria meningitidis por CIM

N°	PE	EN		X*	CI	I L	C	IP	R	IF	ST	X	TC	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R
7	1/7	0	0	0	0	0	0	0	0	0	0	3/7	0	0

^{*} Solamente existe categoría S, en caso de un aislamiento no-sensible referir la cepa a un centro de referencia supraregional

Fuente: Cl. Bíblica, H. Rafael Ángel Calderón Guardia, H. Enrrique Baltodano, H. Monseñor Sanabria, Hospital Nacional de Niños, H. San Vicente de Paúl, H. San Francisco de Asís.

Cuadro COR 5. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PEN	1***	CTX	1***	IPM	1**	E	RI	CL	**	SZ	ζT	CI	łL	R	IF	TC	CY	V/	ΛN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6 años	24	13/24	0	3/24	4/24	1/24	5/19	0	0	3/24	1/19	1/19	0	14/24	0	0	0	0	1/24	7/24	0	0
≥ 6 años	39	16	3	0	3	0	8	0	0	20	3	5	0	21	0	3	0	0	3	15	0	0
Sin dato	7	2/7	1/7	0	1/7	0	1/7	0	0	2/7	0	1/7	0	2/7	0	1/7	0	0	0	3/7	0	0

^{*} Resistente < 19 mm

1 Solo por CIM

Esta tabla incluye únicamente los resultados confirmados por Kirby Bauer (CTX, PEN,IPM realizado por CIM) en el Centro Nacional de Referencia en Bacteriología-INCIENSA

Fuente: H. Enrrique Baltodano, H. Max Peralta, H. México, H. Nacional de Niños, H. San Rafael de Alajuela, H. San Vicente de Paúl, H. Tony Facio, H. San Juan de Dios, Instuto de Atención Pediátrica

Cuadro COR 6. Haemophilus influenzae (aislamientos invasivos)

Edad	NTO	ß-lacta	ımasa1
Edad	IN .	POS	NEG
< 6 años	3	0	3
≥ 6 años	1	0	1
sin dato	1	0	1

¹por Nitrocefin

La prueba de sensibilidad a los antibióticos no se realizó debido a falta de suplemento para el HTM Fuente: H. Max Peralta, H. México, H. Nacional de Niños, H. San Vicente de Paúl, H. Tony Facio

^{**37} muestras ≥=6 se probaron para CL y IMP

^{***} La interpretación de PEN y CTX se realizó según CLSI 2008, utilizando los puntos de corte para meningitis en el caso de muestras aisladas de LCR o de muestras de otro origen invasivo con diagnóstico de meningitis. En el caso de muestras invasivas diferentes a LCR sin la información de diagnóstico, se utilizaron los puntos de corte para no meningitis.

CUBA

SISTEMA DE VIGILANCIA

La red de vigilancia está constituida por 13 instituciones, más el Instituto de Medicina Tropical "Pedro Kouri" (IPK) que es el coordinador nacional de la red de laboratorios. La distribución geográfica de los laboratorios participantes en la red de vigilancia de la resistencia a los antimicrobianos se muestra en la figura CUB 1.

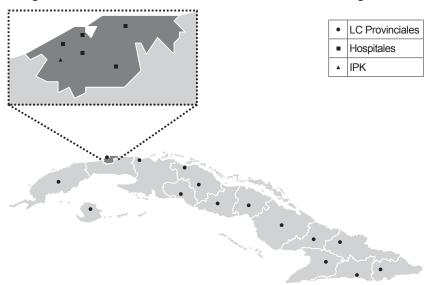


Figura CUB 1. Red de laboratorios de Cuba, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Durante el año 2008 se enviaron 8 muestras repartidas en dos envíos (ver Cuadro Cuba 1). Se dio un periodo de respuesta de 30 días, los laboratorios participanes fueron los 13 integrantes y el 100% respondió en el tiempo requerido.

Cuadro CUB 1. Especies en viadas para la evaluación del desempeño

1er. Semestre	2do. Semestre
Escherichia coli	Pseudomonas aeruginosa
Staphylococcus aureus	Streptococcus pyogenes
Enterococcus faecalis	Shigella spp.
Streptococcus pneumoniae	Salmonella spp.

Cuadro CUB 2. Resultado de la evaluación del desempeño

Tipo de prueba y resultado	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (N=198)		
Género y especie correcto	188	94.5
Género correcto	7	3.5
Género correcto y especie incorrecta	3	2
Género incorrecto	0	0
Tamaño del halo de antibiograma (N=912)*		
<2 mm con el laboratorio organizador	538	58.9
>2 mm y ≤4 mm con el laboratorio organizador	195	21.3
>4 mm con el laboratorio organizador	170	18.6
Interpretación del resultado del antibiograma (N=912)a		
Sensible	500	81.8
Resistente	110	93.2
Intermedia	170	92.8
Errores (N=912)		
Menor	25	2.7
Grave (falsa resistencia)	15	1.6
Muy grave (falsa sensibilidad)	20	2.1

^a De las 912 pruebas realizadas, 611 deberían haber sido informadas como sensibles, 118 resistentes y 183 intermedias.

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro CUB 3. Salmonella por serotipos**

Cti		С	IΡ	N/	A L	Al	MР	C	ГΧ	CA	٩Z	CI	IL	SZ	KΤ	TI	ΞT
Serotipo	Nº	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Typhi	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enteritidis	25	0	0	0	0	0	0	0	0	0	0	0	0	2/25	12/25	0	0
Typhimurium	50	0	0	0	0	0	0	0	0	0	0	0	0	4	20	0	0
Salmonella spp.	20	0	0	0	0	0	0	0	0	0	0	0	0	5/20	12/20	0	0

^{*} Solo en caso de que sean BLEE-

Cuadro CUB 4. Shigella por especies**

Esmania	Nº	C	IΡ	N/	A L	AN	ЛP	C	ГХ	CA	١Z	CF	I L	SZ	ΥT	TI	ΞT
Especie		I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Shigella spp.	50	0	0	0	0	0	2	0	0	0	0	0	0	0	50	0	30
S. flexneri	50	0	0	5	20	1	25	0	0	0	0	1	12	0	25	0	22
S. sonnei	50	0	0	0	23	0	20	0	0	0	0	0	0	1	20	0	10

^{*} Solo en caso de que sean BLEE-

^{*} Se incluyen 13 laboratorios x 8 cepas x 8 antimicrobianos. El 198 corresponde a 18 laboratorios x 11 especies

^{**} Solo cuando no se conozca el serotipo se informara como Salmonella spp.

^{**} Solo cuando no se conozca el serotipo se informara como Shigella spp.

Cuadro CUB 5. Escherichia coli (infección urinaria baja no complicada)

Cove	Edad	N TO	Al	MР	AN	ИС	CΣ	ΚM	GI	EN	AN	ЛK	C	IP	SΣ	ΚT	N.	ΙΤ
Sexo	(años)	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
M	15 a 60	31	16	56	29	39	0	52	0	48	0	13	10	61	0	14	0	10
F	15 a 60	148	6	63	18	15	0	41	0	34	0	10	3	55	0	56	0	20

Cuadro CUB 6. Neisseria meningitidis (solo por CIM)**

Vio	Al	MР	PE	EN	CTX/CRO	R	IF
IN-	I	R	I	R	S*	I	R
7	0	0	1/7	0	7/7	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro CUB 7. Staphylococcus aureus

Nº	PEN	O	ΚA	VAN*	E	RI	C	LI	TI	EC	Mì	ON	SZ	ΚΤ	GI	EN	R	IF
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R
79	0	79	60	79	0	50	1	2	0	1	0	3	0	33	0	8	0	2

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro CUB 8. Staphylococcus spp. coagulasa negativa

	N TO	PEN	VAN*	E	RI	С	LI	TI	EC	Mì	NO	SZ	ΧT	Gl	EN	R	IF
	IN	R	S	I	I R	I	R	I	R	I	R	I	R	I	R	I	R
ĺ	24	22/24	20/24	0	17/24	0	16/24	0	6/24	0	4/24	0	13/24	0	18/24	0	12/24

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro CUB 9. Neisseria gonorrhoeae

Vio	PE	EN	ß-lact	amasa	CTX/CRO		IP	TO	CY
IN	I	R	POS NEG		S*	I	R	I	R
2	0	2	1 1		2	0	0	0	1

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro CUB 10. Streptococcus pneumoniae (aislamientos invasivos)

Edad	N ₀	PE	N1	CF	RO	CI	I L	SZ	ΚΤ	El	RI	VA	ΙN
Edad	IN	S	R	S	R	S	R	I	R	S	R	S	R
< 6 años	10	3	7	10	0	9	1	2	6	1	9	10	0
≥ 6 años	16	8	8	16	0	16	0	1	0	16	0	16	0

¹Solo por CIM

^{**} A partir del año 1991 en que se comenzó a vacunar con VAMENGOC- BC disminuyeron los aisalmientos de N. meningitidis

^{**} En Cuba se utiliza el tratamiento sindrómico en las infecciones de transmisión sexual, y han disminuido los aislamientos de *N. gonorrhoeae*

Cuadro CUB 11. Haemophilus influenzae (aislamientos invasivos)

Edad	No	Al	MР	CF	RO		KΤ	CI	HL.	R	IF
Edad	IN	I	R	I	R	I	R	I	R	I	R
≥6	1	0	1*	0	0	1	0	1	0	0	0
años	_		_			_		_			

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Microorganismos de origen hospitalario

Cuadro CUB 12. Escherichia coli

Nº	Al	ИС	T	ZP	C	ГΧ	CA	١Z	FI	ΞP	IP	M	MI	EN	N/	٩L	С	IP	SZ		N	IT	TO	CY
IN	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
136	10	21	0	3	4	15	13	23	2	9	2	4	0	1	0	75	4	72	0	84	0	27	0	6

^{*} Solo en caso de que sean BLEE-

Cuadro CUB 13. Klebsiella pneumoniae

Nº	AN	ИС	Tz	ZP	C	ГΧ	CA	١Z	Fl	EΡ	IP	M	M	EN	N/	٩L	C	IP	SZ	ΚT	N	ΙΤ	TC	CY
IN	Ι	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R
39	1	12	0	1	1	8	2	9	0	6	0	6	0	5	0	7	0	10	0	15	0	6	0	17

^{*} Solo en caso de que sean BLEE-

Cuadro CUB 14. Enterobacter spp.

No	AN	ИС	TZ	ZΡ	C	ГΧ	CA	١Z	Fl	EΡ	IP	M	M	EN	N/	٩L	C	ΙP	SZ	ΚT	N	ΙΤ	TC	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
12	4	5	0	0	3	0	2	0	1	0	0	2	0	0	0	4	0	5	0	2	2	4	0	0

Cuadro CUB 15. Staphylococcus aureus

N TO	PEN	O	ΚA	FOX	VAN*	E	RI	С	LI	VA	N1	TI	EC	Mî	ON	C	ΙP	S	ΚT	GI	ΞN	R	IF
IN	R	I	R	R	S	Ι	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
12	12	0	7	0	0	1	10	1	27	0	0	0	0	2	0	0	0	0	2	0	9	0	2

¹Solo por CIM

Cuadro CUB 16. Staphylococcus spp. coagulasa negativa

Nº	PEN	O	ΚA	VAN*	E	RI	C	LI	VA	N1	TI	EC	Mì	ON	SZ	ζT	GI	EN	R	ĪF
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
32	31	0	23	100	0	23	6	11	0	0	3	4	0	4	0	15	0	26	2	6

¹Solo por CIM

^{**} Después de la vacunación en el año 1999 no reciben aislamientos de cepas invasivas de *Haemophilus influenzae*.

Cuadro CUB 17. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Egmania	No	AN	ſΡ*	VA	Ν	TI	EC	Gl	EH	Sī	ГΗ	CIP	LEV	CHL	NI	T*
Especie	IN	I	R	I	R	I	R	I	R	I	R	R	R	R	I	R
E. faecalis	45	0	0	0	0	0	0	0	25.6	0	20	0	2.1	12.8	8.5	4.2
E. faecium	10	0	3/10	0	3/10	0	0	0	0	0	4/10	2/10	4/10	4/10	4/10	3/10
Enterococcus spp.	4	0	1/4	0	0	0	0	0	1/4	0	1/4	0	0	0	3/4	0

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro CUB 18. Acinetobacter baumannii

No	TZ	ZP	CA	٩Z	FI	EΡ	IP	M	MI	ΞM	GI	ΞN	C	IΡ	SΣ	ΚT	AN	ЛK	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Cuadro CUB 19. Pseudomonas aeruginosa

No	P	IP	TZ	ZP	CA	٩Z	IP	M	MI	EΜ	A	ZT	GI	EN	AN	ЛΚ	FI	ΞP	С	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
23	1	11	0	3	2	4	0	7	0	3	0	1	0	7	0	3	2	4	0	6

ECUADOR

SISTEMA DE VIGILANCIA

La Red de Vigilancia de Resistencia Antimicrobiana del Ecuador (REDNARBEC) inició en el año 1999. Actualmente cuenta con 22 centros hospitalarios (Figura ECU 1), los cuales realizan control de calidad interno y se someten a una evaluación externa. Los datos de resistencia que se presentan para este año 2008 corresponden únicamente a 15 centros que han enviado sus resultados

	Províncias	Centros hospitalarios
		Hospital Vicente de Paúl
1	Imbabura	Hospital IESS-Ibarra
		Centro Médico Imbabura
		Hospital Carlos Andrade Marín
		Hospital de las Fuerzas Armadas
		Hospital Quito No 1 de la Policía
2	Pichincha	Hospital Baca Ortiz
		Hospital Enrique Garcés
		Hospital SOLCA-Quito
		Hospital Vozandes-Quito
3	Manabi	Hospital Rodríguez Zambrano
4	Pastaza	Hospital Vozandes-Shell
		Hospital Icaza Bustamante
		Hospital Guayaquil
5	Cuovas	Hospital Roberto Gilbert
5	Guayas	Hospital Luis Vernaza
		Hospital de Infectología
		Clínica Alcívar
6	Cañar	Hospital Homero Castañier
7	A-711014	Hospital SOLCA-Cuenca
'	Azuay	Clínica Santa Ana

Figura ECU 1. Red de laboratorios, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Evaluación del desempeño de las 19 Instituciones participantes (Conforman la Red de Vigilancia 22 laboratorios, 3 no respondieron)

Cuadro ECU 1. Especies enviadas para la evaluación del desempeño, 2008

Enterococcus casseliflavus	Proteus mirabilis
Klebsiella oxytoca	Staphylococcus aureus
Staphylococcus aureus	Pseudomonas stutzeri
Enterocococcus faecalis	Klebsiella pneumoniae
Elizabethkingia meningoseptica	Enterococcus raffinosus

Cuadro ECU 2. Resultados de la evaluación del desempeño, 2008

Ti d	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº = 190)		
Género y especie correctos	124	65,2
Género correcto	21	11
Género correcto y especie incorrecta	22	11,5
Género incorrecto	22	11,5
Tamaño del halo del antibiograma (N=763)		
Dentro del rango del laboratorio	570	74,7
Fuera del rango del laboratorio	193	25,3
Interpretación del resultado del antibiograma *		
Sensible	452/485	93.1
Resistente	188/222	84.7
Intermedio	17/56	30.4
Errores ($N^{\circ} = 763$)		
Menor	58	7.6
Grave	22	2.9
Muy Grave	28	3.7

^{*} De las 855 pruebas realizadas, 551 deberían haber sido informadas como S, 247 como R y 57 como I. No informaron, no tuvieron el disco o no interpretaron 91 resultados

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro ECU 3. Salmonella por serotipos

Caratina	Nº	С	IΡ	N	٩L	Al	MР	ΑN	ИC	C	ГΧ	C	١Z	FO	OS	CI	HL	SZ	ΚT	N	IT	Tl	ET
Serotipo	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R
Typhimurium	4	0	0	0	0	0	1/4	0	0	0	2/4	0	0	0	0	0	1/4	0	0	0	0	0	2/4
Typhi	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
spp.	12	0	0	0	0	0	5/12	0	0	0	0	0	0	0	0	0	5/12	0	0	0	0	0	5/12
Paratyphi A	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*} Solo en caso de que sean BLEE-; Se reportan por primera vez *Salmonella typhimurium* productora de BLEE (CTX-M); ** Solo cuando no se conozca el serotipo se informara como *Salmonella* spp.

Cuadro ECU 4. Shigella por especies

Esmania	Nº	C	IΡ	N/	٩L	Al	MР	AN	ИС	C	ГΧ	CA	١Z	FC	OS	(CHL	SZ	KΤ	N	IT	1	ГЕТ
Especie	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R
S. flexnerii	54	0	0	0	0	0	92	0	0	0	0	0	0	0	0	3	81	0	85	0	0	0	93
S. sonnei	9	0	0	0	0	0	7/9	0	0	0	0	0	0	0	0	0	7/9	0	7/9	0	0	0	7/9
S. boydii	2	0	0	0	0	0	2/2	0	0	0	0	0	0	0	0	0	2/2	0	0	0	0	0	2/2
S. dysenteriae	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Shigella spp.	19	0	0	0	0	0	9/19	0	0	0	0	0	0	0	0	0	15/19	0	9/19	0	0	0	15/19

^{*} Solo en caso de que sean BLEE-

Cuadro ECU 5. Escherichia coli (infección urinaria baja no complicada)

Cava	Edad	Nº	Al	MР	AN	ИС	Cl	EΡ	СХ	ΙM	GI	EΝ	AN	ЛK	С	IΡ	SZ	ΚT	N	ΙΤ	FC	OS
Sexo	(años)	IN	Ι	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	I	R	I	R
	≤14	275	2	82	11	38	16	35	3	10	2	10	0	1	1	14	0	72	1	7	0	2
M	15 a 60	373	2	71	9	30	13	39	3	17	1	20	2	3	2	52	1	57	2	12	6	10
	> 60	497	2	80	9	40	18	43	6	28	1	32	1	5	1	69	1	64	5	16	2	10
	≤14	987	1	78	13	46	18	26	2	6	0	10	1	0	3	21	0	69	2	3	1	3
F	15 a 60	2625	2	67	15	56	23	26	2	7	1	14	1	2	2	37	1	59	3	4	2	4
	> 60	1604	3	72	10	26	20	31	4	13	0	20	0	2	2	53	1	60	4	10	1	6

Cuadro ECU 6. Neisseria meningitidis (solo por CIM)

	Nº	Al	ЛP	PE	EN	CTX	CI	IL	C	IP	R		O	FL	SΣ	KΤ	TC	CY
	IN	I	R	I	R	S*	I	R	I	R	I	R	I	R	I	R	I	R
ĺ	5	0	0	0	0	5/5	0	0	0	0	0	0	0	0	1/5	0	0	0

Cuadro ECU 7. Staphylococcus aureus

Nº	PEN	O	ΚA	FOX	VAN*	E	RI	C	LI	TO	CY	CH	L**	C	IP	SΣ	ΥT	GI	EN	R	IF	VA	N^1
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	Ι	R	Ι	R	Ι	R	Ι	R	Ι	R
1280	93	1	24	25	100	12	30	4	18	1	21	0	5	8	16	1	15	1	17	4	6	0	0

^{*}Por antibiograma solo existe categoría S

Cuadro ECU 8. Staphylococcus spp. coagulasa negativa

Nº	PEN	PEN OXA FOX VAN*		E	RI	C	LI	VA	N^1	TO	CY	СН	L**	C	IΡ	SΣ	ΚT	GI	EN	R	IF		
IN	R	Ι	R	R	S	I	R	Ι	R	I	R	I	R	I	R	Ι	R	I	R	Ι	R	I	R
1233	92	1	63	63	100	10	64	4	40	0	0	2	34	0	9	8	41	2	44	31	22	3	13

^{*}Por antibiograma solo existe categoría S; ¹ Solo por CIM; ** N = 33

Cuadro ECU 9. Neisseria gonorrhoeae

N10	PE	EN	ß-lacta	amasa¹	CTX	C	IP	TO	CY
IN	I	R	POS	NEG	S*	I	R	I	R
3	0	1/3	1	0	3/3	0	0/1	0/3	1/3

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro ECU 10. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N1	CX	M1	CT	X1	IP	M1	El	RI	C	LI	SZ	ΧT	CI	IL.	R	IF	TO		VA	١N
(años)	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	Ι	R
< 5	24	6/24	4/24	2/24	0	0	0	0	0	0	4/24	0	0	0	0	12/24	0	0	0	0	NT	NT	0	0
≥6	22	4/22	1/22	3/22	0	0	0	0	0	0	0	2/22	0	2/22	0	4/22	0	0	0	0	0	2/22	0	0

^{*} Resistente ≤19 mm; ¹Solo por CIM

¹ Solo por CIM

^{**}N = 20

¹ Por Nitrocefin

Cuadro ECU 11. Haemophilus influenzae (aislamientos invasivos)

Edad	No	Al	MР	SA	M	CI	EC	СУ	M	CTX	AZM	CIP	SΣ	ΚT	CI	HL
(años)	IN	I	R	I	R	I	R	I	R	S*	S*	S*	I	R	I	R
< 5	3	0	0	0	0	0	0	0	0	0	0	0	0	1/3	0	0
≥6	5	0	1/5	0	0	0	0	0	0	0	0	0	0	0	0	1/5

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro ECU 12. Streptococcus \(\beta\)-hemolítico

N 10	PEN	C	LI	E	RI	TC	CY
IN	S*	I	R	I	R	I	R
126¹	100	8	21	8	12	10	23

Microorganismos de origen hospitalario

Cuadro ECU 13. Escherichia coli

Nio	Al	MР	AN	ИС	C	EΡ	TZ	ZΡ	C	ſΧ	CA	٩Z	FI	ΞP	IP	M	Ml	EΜ	N/	L^1	CI	IL²	С	IΡ	SΣ	ΥT	NI	T^3	TC	$^{\circ}Y^{4}$
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	Ι	R	Ι	R	I	R	I	R	I	R	I	R	Ι	R	Ι	R	I	R
2317	2	75	12	63	17	31	10	8	5	17	2	20	1	20	0	0	0	0	3	57	1	22	3	50	1	62	4	9	4	71

^{*} Solo en caso de que sean BLEE-; ¹N=965; ² N=101; ³N=2901; ⁴N=93

Cuadro ECU 14. Klebsiella pneumoniae

N TO	Al	ИC	Cl	EP	TZ	ZΡ	C.	ГΧ	CA	١Z	Fl	ΞP	IP	M	MI	EΜ	N/	L^1	CF	IL^2	С	IΡ	SZ	ζT	N	IT^3	TC	$^{\circ}Y^{4}$
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	Ι	R
967	6	77	3	70	15	28	3	45	1	58	1	59	0	0	0	0	8	45	1	49	4	42	6	44	8	48	8	52

^{*} Solo en caso de que sean BLEE-; ¹N=41; ² N=3; ³N=79; ⁴N=26

Cuadro ECU 15. Enterobacter spp

	N TO	AN	ИС	TZ	ZΡ	C	ГΧ	CA	١Z	FI	ΞP	IP	M	MI	EM	NA	L^1	CH	IL^2	C	IΡ	S	ΥT	NI	T^3	TC	Y^4
	IN	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R	Ι	R	I	R	Ι	R	I	R
ĺ	302	2	91	11	35	12	35	4	41	9	19	0	0	0	0	5	44	0	0	1	22	4	37	8	51	4	42

¹N=173; ² N=105; ³N=318; ⁴N=79

Cuadro ECU 16. Staphylococcus aureus

Nº	PEN	O	ΧA	FOX	VAN*	E	RI	C	LI	VA	N^1	TO	CY	CF	IL^1	С	ΙP	SΣ	ΚT	Gl	EN	R	IF
IN.	R	I	R	R	S	Ι	R	Ι	R	I	R	I	R	Ι	R	I	R	Ι	R	I	R	Ι	R
1407	94	1	39	41	100	36	78	5	25	0	0	3	41	2	9	6	28	1	29	1	35	3	8

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM N= 544; ¹N=45

Cuadro ECU 17. Staphylococcus spp. coagulasa negativa

N TO	PEN	O	ΚA	FOX	VAN*	E	RI	C	LI	VA	N1	TO	CY	CI	IL	С	IΡ	SZ	ΚT	Gl	ΞN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	I	R	I	R
851	97	0	72	72	100	4	75	6	56	0	0	3	31	0	25	7	59	3	61	2	54	1	20

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM; ¹N=25

Cuadro ECU18. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Egnacia	Nº	AN	ſΡ*	VA	λN	TEC] **	GI	EH	ST	Ή
Especie	IN	I	R	I	R	I	R	I	R	I	R
E. faecalis	712	0	6	0	0	0	0	2	27	2	27
E. faecium	59	0	73	4	0	0	0	0	7	0	10
Enterococcus spp.	70	0	33	2	0	NT	NT	2	23	NT	NT

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar; ** N= 219

Cuadro ECU 19. Acinetobacter baumannii

Nº	SA	M	T	ZP	CA	١Z	FI	ΞP	IP	M	MI	EM	GI	EN	C	IP	SZ	ΥT	AN	ЛK	TC	Y**
IN.	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
348	4	58	7	55	9	64	8	61	3	37	4	34	2	59	2	64	2	68	5	57	8	58

¹Informar solo cuando se hace por CIM

Cuadro ECU 20. Pseudomonas aeruginosa

Nº -		ZΡ	CA	٩Z	IP	M	MI	EM	AT	M	GI	EN	AN	ИK	FI	EP	C	IP
IN [I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
983	0	34	6	37	3	25	5	30	20	38	3	52	2	23	7	31	4	45

^{**} N = 12

ESTADOS UNIDOS DE AMERICA

RESULTADO DE LA VIGILANCIA

Cuadro EEUU 1. Definición de fenotipos

NR	No se detecta resistencia
≥1	Resistencia a ≥1 subclases, según definición del CLSI
≥1 ≥2 ≥3 ≥4 ≥5	Resistencia a ≥2 subclases, según definición del CLSI
≥3	Resistencia a ≥3 subclases, según definición del CLSI
≥4	Resistencia a ≥4 subclases, según definición del CLSI
≥5	Resistencia a ≥5 subclases, según definición del CLSI
ACSSuT	Resistencia a ampicilina, cloranfenicol, streptomicina,
ACSSUI	sulfametoxazol/sulfisoxazol y tetraciclina
ACSuTm	Resistencia a ampicilina, cloranfenicol y trimetoprim/sulfometoxazol
ACSSuTAuCf	Resistencia a ACSSuT + amoxicilina/ ácido clavulánico y ceftiofur
MDR-AmpC	Resistencia a ACSSuTAuCf + sensibilidad disminuida a
MDK-AllipC	ceftriaxona (CIM ≥2 μg/mL)
Q&3GC	Resistencia a quinolonas y cefalosporinas (3ª generación)
ASuTm	Resistencia a ampicilina y trimetoprim/sulfometoxazol
ANSuTm	Resistencia a ASuTm + ácido nalidíxico

Cuadro EEUU 2. Porcentaje de aislados de Salmonella no-Typhi con resistencia a los antibióticos, 2007

Antibiótico	%	AMI	GEN	KAN	STR	AMP	AMC	TIO	AXO	FOX	COT	CHL	CIP	NAL	FIS	TET
Salmonella no Typi	I	0.0	0.1	<0.1	N/A	0.0	4.1	0.0	0.0	0.7	N/A	0.9	0.0	N/A	N/A	0.1
(N=2161)	R	0.0	2.1	2.8	10.3	10.0	3.2	3.2	3.2	2.9	1.5	7.2	< 0.1	3.0	12.2	14.3
S. Typhimurium	I	0.0	0.2	0.2	NA	0.0	20.1	0.0	0.0	0.0	NA	0.2	0.0	NA	NA	0.0
(N=403)	R	0.0	2.5	5.7	32.3	31.5	6.5	6.2	6.2	0.0	2.2	25.3	0.0	1.5	37.2	36.7
S. Enteritidis	I	0.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	0.3	NA	0.8	0.0	NA	NA	0.3
(N=385)	R	0.0	0.0	0.5	0.5	2.1	0.5	0.3	0.3	0.3	1.0	0.5	0.0	5.7	1.6	3.9
S. Newport	I	0.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	NA	NA	0.0
(N=220)	R	0.0	0.9	0.9	10.0	9.5	7.7	7.7	7.7	7.7	1.8	9.1	0.0	0.0	10.0	9.5

Cuadro EEUU 3. Porcentaje de aislados de Salmonella no-Typhi con diferentes perfiles de resistencia, 2007

Perfiles de resistencia	NR	≥1	≥2	≥3	≥4	≥5	ACSSuT	ACSuTm	ACSSuTAuCf	MDR-AmpC	Q&3GC
Salmonella no-Typhi (N=2161)	80.0	19.5	14.1	11.1	8.1	6.9	6.2	0.7	2.1	2.1	0.2
S. Typhimurium (N=403)	57.6	42.4	39.2	34.2	29.8	24.8	22.6	1.7	3.5	3.5	0.2
S. Enteritidis (N=385)	90.4	9.6	3.4	1.0	0.3	0.3	0.3	0.0	0.3	0.3	0.3
S. Newport (N=220)	89.5	10.5	10.5	10.5	9.1	8.2	8.2	0.5	7.7	7.7	0.0

Cuadro EEUU 4. Porcentaje de aislados de Salmonella Typhi con resistencia a los antibióticos, 2007

Antibiótico	%	AMI	GEN	KAN	STR	AMP	AMC	TIO	AXO	FOX	COT	CHL	CIP	NAL	FIS	TET
S. Typhi	I	0.0	0.0	0.0	NA	0.0	0.5	0.0	0.0	0.8	NA	0.5	0.8	NA	NA	0.0
(N=398)	R	0.0	0.0	0.0	15.6	17.1	0.3	0.0	0.0	0.5	16.3	15.8	1.0	62.3	17.6	6.3

$\it Cuadro\,EEUU\,5$. Porcentaje de aislados de $\it Salmonella$ Typhi con diferentes perfiles de resistencia, 2007

Perfiles de resistencia	NR	≥1	≥2	≥3	≥4	≥5	ACSSuT	ACSuTm	ACSSuTAuCf	MDR-AmpC	Q&3GC
Salmonella Typhi (N=398)	35.4	64.6	18.1	17.6	17.1	14.8	3.8	15.3	0.0	0.0	0.0

Cuadro EEUU 6. Porcentaje de aislados de Shigella con resistencia a los antibióticos, 2007

Antibiótico	%	AMI	GEN	KAN	STR	AMP	AMC	TIO	AXO	FOX	COT	CHL	CIP	NAL	FIS	TET
Shigella spp.	I	0.0	0.0	0.0	NA	1.0	38.2	0.0	0.0	0.2	NA	0.4	0.0	NA	NA	0.2
(N=482)	R	0.0	0.8	0.2	73.0	63.5	0.4	0.0	0.0	0.0	34.6	8.3	0.2	1.9	25.7	25.5
S. flexneri	I	0.0	0.0	0.0	NA	0.0	52.5	0.0	0.0	0.0	NA	0.0	0.0	NA	NA	0.0
(N=61)	R	0.0	0.0	0.0	52.5	63.9	0.0	0.0	0.0	0.0	49.2	55.7	1.6	43.9	62.3	83.6
S. sonnei	I	0.0	0.0	0.0	NA	1.2	36.3	0.0	0.0	0.2	NA	0.5	0.0	NA	NA	0.2
(N=416)	R	0.0	1.0	0.2	76.4	63.7	0.5	0.0	0.0	0.0	32.2	1.2	0.0	1.4	20.0	16.1

Cuadro EEUU 7. Porcentaje de aislados de Shigella con diferentes perfiles de resistencia, 2007

Perfiles de resistencia	NR	≥1	≥2	≥3	≥4	≥5	ACSSuT	ACSuTm	ASuTm	ANSuTm	ACSSuTAuCf	MDR-AmpC	Q&3GC
Shigella spp. (N=482)	7.3	92.7	68.5	33.2	11.6	4.6	3.7	3.9	18.9	0.8	0.0	0.0	0.0
S. flexneri (N=61)	9.8	90.2	80.3	68.9	55.7	27.9	26.2	26.2	36.1	1.6	0.0	0.0	0.0
S. sonnei (N=416)	7.0	93.0	66.6	27.6	5.0	1.2	0.5	0.5	16.3	0.7	0.0	0.0	0.0

Cuadro EEUU 8. Porcentaje de aislados de *Escherichia coli* O157 con resistencia a los antibióticos, 2007

Antibiótico	%	AMI	GEN	KAN	STR	AMP	AMC	TIO	AXO	FOX	COT	CHL	CIP	NAL	FIS	TET
Escherichia coli O157	I	0.0	0.0	0.0	NA	0.0	1.1	0.0	0.0	3.2	NA	2.1	0.0	NA	NA	1.1
(N=190)	R	0.0	0.0	0.0	2.1	2.1	0.5	0.0	0.0	0.0	1.1	0.5	0.5	2.1	2.6	4.7

Cuadro EEUU 9. Porcentaje de aislados de *Escherichia coli* O157 con diferentes perfiles de resistencia, 2007

	Perfiles de resistencia	NR	≥1	≥2	≥3	≥4	≥5	ACSSuT	ACSuTm	ACSSuTAuCf	MDR-AmpC	Q&3GC
Es	cherichia coli O157 (N=190)	92.1	7.9	3.2	2.1	1.1	0.5	0.0	0.0	0.0	0.0	0.0

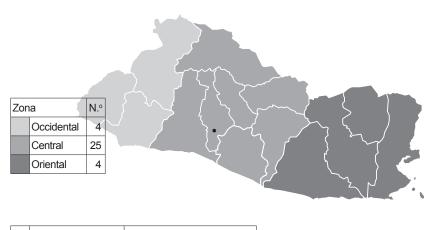
Cuadro EEUU 10. Porcentaje de aislados de Campylobacter con resistencia a los antibióticos, 2007

Antibiótico	%	GEN	CLI	AZM	ERI	FFN	CIP	NAL	TET
Campylobacter spp.	I	< 0.1	0.3	0.0	0.0	0.0	0.2	0.4	< 0.1
(N=1100)	R	0.6	1.7	2.0	2.0	0.0	26.0	26.5	44.4
C. coli	I	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0
(N=105)	R	0.0	5.7	5.7	5.7	0.0	28.6	30.5	41.9
C. jejuni	I	0.1	0.1	0.0	0.0	0.0	0.2	0.4	0.1
(N=992)	R	0.7	1.3	1.6	1.6	0.0	25.8	26.1	44.8

Cuadro EEUU 11. Porcentaje de aislados de *Campylobacter* con diferentes perfiles de resistencia, 2007

Perfiles de resistencia	NR	≥1	≥2	≥3	≥4	≥5
Campylobacter spp. (N=1100)	45.2	54.8	17.5	1.7	0.9	0.0
C. coli (N=105)	41	59.0	18.1	5.7	1.0	0.0
C. jejuni (N=992)	45.5	54.5	17.4	1.3	0.9	0.0

Cuadro EEUU 12. Número y porcentaje de muestras aisladas entre los 20 serotipos más comunes de Salmonella no-Typhi resistentes a ACSSuT, MDR-AmpC, ácido nalidixico, y ceftiofur. NARMS, 2007


L	Contract	7		ACSSuT*		V	MDRAmpC†		Ą	Ácido nalidíxico	ico		Ceftiofur	
	odnoise	N.	u	(%)	(%)	u	(%)	(%)	u	(%)	(%)	u	(%)	(%)
1	Typhimurium	403	91	19.0	(%6.99)	14	0.16	(16.5%)	9	60.0	(9.4%)	25	0.36	(35.7%)
2	Enteritidis	385	1	0.01	(0.7%)	1	0.01	(1.2%)	22	0.34	(34.4%)	1	0.01	(1.4%)
3	Newport	220	18	0.13	(13.2%)	17	0.20	(20.0%)	0	0.00	(0.0%)	17	0.24	(24.3%)
4	Heidelberg	86	3	0.02	(2.2%)	0	0.00	(0.0%)	0	0.00	(0.0%)	7	0.10	(10.0%)
5	I 4,[5],12:i:-	73	1	0.01	(0.7%)	0	0.00	(0.0%)	1	0.02	(1.6%)	2	0.03	(2.9%)
9	Javiana	9	0	0.00	(0.0%)	0	0.00	(%0.0)	0	0.00	(0.0%)	0	0.00	(0.0%)
7	Muenchen	64	0	0.00	(%0.0)	0	0.00	(%0.0)	0	00.00	(%0.0)	0	0.00	(0.0%)
~	Montevideo	51	0	0.00	(%0.0)	0	0.00	(%0.0)	0	00.00	(%0.0)	0	0.00	(0.0%)
6	Tennessee	38	0	0.00	(%0.0)	0	0.00	(%0.0)	0	00.00	(%0.0)	0	0.00	(0.0%)
10	Mississippi	37	0	0.00	(%0.0)	0	0.00	(%0.0)	0	0.00	(%0.0)	0	0.00	(0.0%)
11	Oranienburg	37	0	0.00	(0.0%)	0	0.00	(0.0%)	0	0.00	(%0.0)	0	0.00	(0.0%)
12	12 Braenderup	36	0	00.0	(0.0%)	0	0.00	(%0.0)	0	00.00	(%0.0)	0	0.00	(0.0%)
13	13 Agona	32	7	0.05	(5.1%)	7	80.0	(8.2%)	1	0.02	(1.6%)	8	0.11	(11.4%)
14	14 Saintpaul	32	0	0.00	(%0.0)	0	0.00	(%0.0)	0	0.00	(%0.0)	1	0.01	(1.4%)
15	Infantis	26	0	0.00	(0.0%)	0	0.00	(0.0%)	0	0.00	(0.0%)	1	0.01	(1.4%)
16	Paratyphi B var. L(+) tartrate+	25	2	0.01	(1.5%)	0	0.00	(0.0%)	0	0.00	(%0.0)	0	00.00	(0.0%)
17	17 Mbandaka	24	0	0.00	(%0.0)	0	0.00	(%0.0)	0	0.00	(%0.0)	0	0.00	(0.0%)
18	18 Poona	22	0	0.00	(%0.0)	0	00.0	(0.0%)	0	0.00	(0.0%)	0	0.00	(0.0%)
19	19 Stanley	20	0	0.00	(0.0%)	0	0.00	(0.0%)	0	0.00	(0.0%)	0	0.00	(0.0%)
20	20 Schwarzengrund	19	0	0.00	(%0.0)	0	00.0	(0.0%)	0	0.00	(0.0%)	0	0.00	(0.0%)
Subtotal	otal	1707	123	06.0	(90.4%)	39	0.46	(45.9%)	30	0.47	(46.9%)	62	0.89	(88.6%)
Rest	Resto de serotipos	454	13	0.10	(%9.6)	46	0.54	(54.1%)	34	0.53	(53.1%)	∞	0.11	(11.4%)
Total		2161	136	1.00	(100.0%)	85	1.00	(100.0%)	64	1.00	(100.0%)	70	1.00	(100.0%)

† MDR-AmpC: Resistencia a ACSSuT + amoxicilina/ácido clavulánico, ceftiofur + sensibilidad disminuida a ceftriaxona (CIM ≥2μg/mL) *ACSSuT: resistencia a ampicilina, cloranfenicol, estreptomicina, sulfametoxazol/sulfisoxazol y tetraciclina

EL SALVADOR

SISTEMA DE VIGILANCIA

La red de laboratorios para la vigilancia de la resistencia antimicrobiana en El Salvador está constituida por 24 Laboratorios de GOES, 8 Laboratorios del ISSS y 1 un Laboratorio de Sanidad Militar, haciendo un total de 29 hospitales y 4 Unidades de Salud. El laboratorio coordinador de la red de vigilancia de resistencia a los antibióticos es el Laboratorio Central Dr. Max Bloch que forma parte del Ministerio de Salud Pública y Asistencia Social.

Laboratorio Central 24 GOES + 8 ISSS + 1 SM

Figura ELS 1. Red de laboratorios

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro ELS 1. Especies enviadas para la evaluación del desempeño de 2008

1er. semestre	2do. semestre
Enterococcus faecalis ATCC 29212	Staphylococcus aureus ATCC 29213
Escherichia coli ATCC 25922	Staphylococcus aureus ATCC 43300
Escherichia coli ATCC 35218	Staphylococcus aureus ATCC 25923
Streptococcus pneumoniae ATCC 49619	Klebsiella pneumoniae ATCC 700603
	Pseudomonas auruginosa ATCC 27853

Cuadro ELS 2. Resultados de la evaluación del desempeño

Tina da musha vi masultada	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº =306)		
Género y especie correctos	300	98.00%
Género correcto	4	1.30%
Género correcto y especie incorrecta	0	0
Género incorrecto	2	0.70%
Tamaño del halo del antibiograma (N° = 2,448)		
Dentro del rango de referencia	2148	88%
Fuera de rango de referencia	300	12%

En el año 2008 para estudio de susceptibilidad solamente se enviaron cepas ATCC para control de calidad del método, por lo tanto solo se evaluó si estaban fuera o dentro del rango y no la interpretación

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro ELS 3. Salmonella por serotipos**

C4i	Nº	C	IΡ	Al	MР	AN	ИС	C	ГΧ		١Z	CI	HL	SZ	ΚT	N	ΙΤ
Serotipo	IN.	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Typhi	63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
spp.	35	0	6	0	3	3	3	0	0	3	0	0	0	0	6	0	49

^{*} Solo en caso de que sean BLEE-; ** Solo cuando no se conozca el serotipo se informara como Salmonella spp.

Cuadro ELS 4. Shigella por especies**

Egnacia	Nº	C	IΡ	Al	MР	Al	ИС	C	ГΧ	CA	١Z	CI	HL	SZ	ΚΤ	N	IT
Especie	IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
S.boydii	6	0	0	0	5/6	0	5/6	0	0	0	0	0	0	0	4/6	0	0
S.flexneri	4	0	0	0	3/4	0	3/4	0	0	0	0	0	0	0	1/4	0	0
S.sonnei	22	0	0	0	3/22	0	3/22	0	0	0	0	0	0	0	19/22	0	2/22

^{*} Solo en caso de que sean BLEE-;

Cuadro ELS 5. Escherichia coli (infección urinaria baja no complicada)

Sexo	Edad	Nº	Al	MP	AN	ИС	Cl	EP	GI	EN	AN	ΛK	C	IP	SZ	ΧT	N	IT
Sexo	(años)	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	≤14	16	0	15/16	6/16	9/16	1/16	4/16	0	1/16	0	0	0	1/16	0	11/16	0	0
M	15 a 60	15	0	13/15	6/15	7/15	0	11/15	0	6/15	0	0	0	11/15	0	11/15	0	3/15
	> 60	34	3	79	26	44	NT	NT	6	24	0	12	0	76.5	0	68	0	29
	≤14	60	2	90	42	32	3	35	2	18	0	0	0	32	0	60	2	2
F	15 a 60	115	0	79	42	36	6	32	5	19	0	2	0	47	0	66	3	8
	> 60	80	0	89	49	36	4	51	5	28	2	2.5	0	7	0	74	4	8

^{**} Solo cuando no se conozca el serotipo se informara como Shigella spp.

Cuadro ELS 6. Staphylococcus aureus

Nº	PEN	O	ΚA	FOX	VAN*	El	RI	C.	LI	VA	N^1	TO	CY	CI	HL	С	ΙP	SZ	ΚT	GI	ΞN	R	IF
IN	R	Ι	R	R	S	Ι	R	I	R	I	R	Ι	R	I	R	Ι	R	I	R	Ι	R	I	R
137	99	0	29	0	100	29	38	2	17	0	0	4	39	0	37,5	2	25	0	30	1	7	0	4

^{*}Por antibiograma solo existe categoría S

Cuadro ELS 7. Staphylococcus spp. coagulasa negativa

No	PEN	O	ΧA	VAN*		RI	C	LI	TO	CY	C	IΡ	SZ	ΚT	GI	EN	R	
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R
83	99	1	68	0	6	64	0	30	2	55	0	26	0	60	11	31	0	0

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro ELS 8. Neisseria gonorrhoeae

NI ₀	PE	EN	ß-lacta	ımasa¹	CTX/CRO	C	IP	TO	CY
IN	I	R	POS	NEG	S*	I	R	I	R
8	0	8/8	8/8	0	8/8	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional; ¹ Por Nitrocefin

Cuadro ELS 9. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	El	RI	C	LI	SX	ΚΤ	VA	AN
Edad	IN	R*	I	R	I	R	I	R	I	R
< 6 años	32	31	0	22	0	22	0	38	0	0
≥ 6 años	10	2/10	0	0	0	0	0	2/10	0	0

^{*} Resistente ≤19 mm; ¹Solo por CIM

Cuadro ELS 10. Haemophilus influenzae (aislamientos invasivos)

Edad	N ₀	Al	MР	SA	M	СУ	ΚM	CTX	CIP	SZ	ΚT	CI	I L
Edad	IN	I	R	I	R	I	R	S*	S*	I	R	I	R
< 6 años	2	0	0	0	0	0	0	2/2	2/2	0	0	NT	NT
≥6 años	1	0	1/1	0	0	0	0	1/1	2/2	0	1/1	0	1/1

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Microorganismos de origen hospitalario

Cuadro ELS 11. Escherichia coli

Nº	Al	MP	AN	ИС	Cl	EΡ	TZ	ZΡ	C	ГΧ	C	ΑZ	Fl	ΞP	IP	M	Ml	EN	C	IΡ	SΣ	ΚT	N	IT
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
949	1	77	45	28	7	26	4	3	0	2	2	2	0	3	0	0	0	0	0	29	0	66	4	5

^{*} Solo en caso de que sean BLEE-

¹ Solo por CIM

Cuadro ELS 12. Klebsiella pneumoniae

	No.	Al	MР	AN	ИС	C	EP	Tz	ZΡ	C	ГΧ	CA	١Z	Fl	ΞP	IP	Μ	M	EN	С	ΙP	SZ	ΚT	N.	IT
1	١	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
2	58	3	93	3	22	2	21	4	9	1	9	0	9	0	9	0	0	0	0	1	13	0	31	24	25

^{*} Solo en caso de que sean BLEE-

Cuadro ELS 13. Enterobacter spp.

Nº	Αľ	MР	ΑN	ИC	C	EP	TZ	ZΡ	C	ГΧ	C	٩Z	Fl	ΞP	IP	M	M	EN	Cl	HL	С	IΡ	SZ	KΤ	N	ΙΤ	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R
215	2	97	5	84	2	95	21	21	9	47	11	34	2	31	0	0	0	0	3	59	0	31	0	62	24	37	14	79

Cuadro ELS 14. Staphylococcus aureus

Vio	PEN	AN	ИС	FOX	VAN*	El	RI	C	LI	TO	CY	CI	IL	C	IΡ	SZ	ΧT	GI	ΞN	R.	ΙF
IN	R	I	R	R	I	R	I	R	I	I	R	I	R	I	R	I	R	I	R	I	R
1162	94	0	51	46	100	52	0	40	1	5	52	0	40	1	0	0	21	2,5	25	0	0

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro ELS 15. Staphylococcus spp. coagulasa negativa

Nº	PEN	AN	ИС	FOX	VAN*	E	RI	C	LI	TO	CY	Cl	HL	С	IP	SZ	ΧT	GI	EN	R	IF
11	R	I	R	R	I	R	I	R	I	I	R	I	R	I	R	I	R	I	R	I	R
486	99	0	38	38	100	6	65	1	51	2,5	38,5	0	67	2	50	0	84	7	49	2	27

^{*}Por antibiograma solo existe categoría S

Cuadro ELS 16. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Especie	Nº	AN	ſP*	VA	ΙN	GI	EH	ST	ΤH
Especie	IN IN	I	R	I	R	I	R	I	R
E. faecalis	49	0	6	0	0	0	30	0	34
E. faecium	17	0	11/17	0	3/17	0	1/17	0	7/17
Enterococcus spp.	42	0	18	0	11	0	2	0	28

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro ELS 17. Acinetobacter baumannii

ſ	No	SA	M	TZ	ZP	CA	١Z		ΞP	IP	M	MI	EM	GI	EN	C	IΡ	SΣ	KΤ	AN	ЛΚ
	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	328	6	68	7	71	35	50	5	79	0	31	0	26	6	80	1	83	0	84	12	68

Cuadro ELS 18. Pseudomonas aeruginosa

Γ	Nº	P	IP		ZΡ	(:/	١Z	IP	M	MI	EM	GI	EN	AN	ЛΚ		ΞP	C	IP
	11	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	625	0	47	0	29	15	38	2	33	2	34	6	39	6	31	16	35	1	46

¹Solo por CIM

GUATEMALA

SISTEMA DE VIGILANCIA

La red de laboratorios para la vigilancia de la resistencia antimicrobiana en Guatemala está constituida por 5 laboratorios. El laboratorio coordinador de la red de vigilancia de resistencia a los antibióticos es el Laboratorio Nacional de Salud

Región	Hos	pitales participantes
	1	Hospital Roosevelt
Metropolitana	2	Hospital General San Juan de Dios
	3	Hospital de Enfermedades IGSS
	4	Nacional de Cobán
Interior de la República	5	Nacional de Zacapa
la i topasiioa	6	Nacional de Quiché

Figura GUT 1. Red de laboratorios de Guatemala

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro GUT 1. Salmonella por serotipos**

Caratina	Nº	С	IP	N/	٩L	Al	MР	Al	ИС	C.	ГΧ	CA	١Z	CI	IL	SZ	KΤ	TI	ET
Serotipo	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Paratyphi B	17	0	0	0	0	0	3/17	0	0	0	1/17	0	0	0	0	0	0	0	0

^{*} Solo en caso de que sean BLEE-; ** Solo cuando no se conozca el serotipo se informara como Salmonella spp.

Cuadro GUT 2. Shigella por especies**

Ei-	Nº	С	IΡ	Al	MР	AN	ИС	C	ГΧ	CA	٩Z	FC	OS	CI	ΉL	SΣ	KΤ	N	ΙΤ	Tl	ЕТ
Especie	IN.	Ι	R	I	R	Ι	R	I*	R	I*	R	I	R	Ι	R	I	R	Ι	R	Ι	R
Shigella spp.	20	0	0	0	1/20	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
S. flexneri	17	0	0	0	12/17	0	0	0	0	0	0	0	0	0	0	2/17	8/17	0	0	0	0
S. sonnei	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. dysenteriae	2	0	0	0	1/2	0	0	0	0	0	0	NR	NR	0	0	0	0	0	1/2	0	0

^{*} Solo en caso de que sean BLEE-; ** Solo cuando no se conozca el serotipo se informara como Shigella spp.

Cuadro GUT 3. Staphylococcus aureus

N	PEN	ΟX	ΚA	VAN*	El	RI	C	LI	TO	CY	CI	IL	C	IΡ	SΣ	(I)	GI	EN	R	IF
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
90	5 12	0	16	100	1	4	2	40	2	17	0	1	0	7	0	0	2	3	0	0

^{*}Por antibiograma solo existe categoría S

Cuadro GUT 4. Streptococcus pneumoniae (aislamientos invasivos)

Edad	No	OXA	E	RI	C	LI		ΚΤ	CI	IL	R		TC	CY	VA	ΛN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6 años	8	4/8	0	3/8	0	2/8	0	5	0	0	0	0	0	4/8	0	0

^{*} Resistente ≤19 mm

Cuadro GUT 5. Haemophilus influenzae (aislamientos invasivos)

Edad	No	Al	MР	SA	M	CI	EC	CX	M	CTX	AZM	SZ	ΚT	CI	HL
Edad	IN	I	R	I	R	I	R	I	R	S*	S*	I	R	I	R
< 6 años	1	0	0	0	0	0	0	0	0	1/1	1/1	0	0	0	0
≥ 6 años	2	0	0	0	0	0	0	0	0	2/2	2/2	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro GUT 6. Streptococcus \u00e3-hemolítico

V10	PEN	C	LI	E	RI	TO	CY
11	S*	I	R	I	R	I	R
102	100	0	0	0	2	3	47

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Microorganismos de origen hospitalario

Cuadro GUT 7. Escherichia coli

Γ	3. 70	Αl	MР	AN	ΛС	Cl	EΡ	TZ	ZΡ	C	ſΧ	CA	١Z	Fl	EΡ	IP	M	M	EN	CI	ΗL	C	IΡ	SZ	ΧT	N	IT	TO	CY
	Nº	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
3	682	0	40	5	11	20	37	18	2	2	16	1	14	0.3	1	0.1	0.4	0.1	0.1	6	13	0.4	43	0	56	1	1	0.2	16

^{*} Solo en caso de que sean BLEE-

Cuadro GUT 8. Klebsiella pneumoniae

No	Al	MР	AN	ИС		EP		ZΡ	C	ГΧ	C	٩Z	Fl	EΡ	IP	M	MI	EM	CI	IL	C	ΙP	SΣ	ζT	N.	ΙΤ	TO	CY
IN IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2435	0.2	52	0	11	62	20	18	13	0.9	25	1	22	0.2	22	0.2	0.7	0.1	0.1	0	0	1	47	0.8	45	22	7	0.2	24

^{*} Solo en caso de que sean BLEE-

Cuadro GUT 9. Enterobacter spp.

Nio	Al	MP	AN	ΛС	C	EP	T	ZΡ	CI	X	C	٩Z	Fl	ΞP	IP	M	MI	EM	CI	IL.	С	IP	SZ	ΥT	N	IT	TC	
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1647	2	32	0.1	19	0	20	5	22	5	29	3	29	14	10	0.2	0.8	0.1	0.4	0	0.2	1	6	0	29	7	10	0.1	4

Cuadro GUT 10. Staphylococcus aureus

Nº	PEN	O	ΚA	VAN*	El	RI	C	LI	TO	CY	CI	IL.	C	IΡ	SZ	ΚT	Gl	EN	R	IF
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2493	88	0.4	78	100	0.2	84	0.2	44	2	16	10	11	0.4	46	0	2	0	24	1	2

^{*}Por antibiograma solo existe categoría S

Cuadro GUT 11. Staphylococcus spp. coagulasa negativa

Γ,	/lo	PEN	O	ΧA	VAN*	E	RI	C	LI	TC	CY	CI	HL	C	IΡ	SZ	ΥT	GI	EN	R	IF
1	. N	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
16	560	94	5	71	100	1	68	0.4	57	0.3	2	0.1	0.8	0.1	6	0	16	7	53	2	12

^{*}Por antibiograma solo existe categoría S

Cuadro GUT 12. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp.

Eamania	Nº	AN	ſΡ*	VA	AN	GI	EH	ST	TH .
Especie	IN	I	R	I	R	I	R	I	R
Enterococcus spp.	21	1/21	8/21	0	5/21	0	0	0	0
E. faecalis	618	0.0	3.0	0	4	0	40	0	4
E. faecium	264	0.8	57	0	31	0	48	0	30

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro GUT 17. Acinetobacter baumannii

N TO	SA	M	TZ	ZΡ	CA	١Z	FI	ΞP	IP	M	MI	EM	GI	EN	С	IP	SZ	ζT	AN	ЛK	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2455	6	83	4	55	8	24	3	30	6	67	5	61	4	36	0	24	0	14	51	28	0	53

Cuadro GUT 18. Pseudomonas aeruginosa

Nº	P	IP	TZ	ZΡ	Cl	FP	CA	١Z	IP	M	Ml	ΞM	A	ZT	GI	ΞN	AN	ЛΚ	FI	ΞP	С	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
3048	2	19	17	19	0	12	10	23	3	35	2	23	8	12	6	34	17	12	14	20	1	31

HONDURAS

SISTEMA DE VIGILANCIA

La red de vigilancia de Resistencia a los antibióticos en Honduras esta constituida por cinco laboratorios de hospitales Nacionales distribuidos por área geográfica en el país. El laboratorio coordinador de la red es el Laboratorio Nacional de Vigilancia seccion de Bacteriología, de la secretaria de salud. Las instituciones participantes en la vigilancia se muestran en la figura HON 1.

- Laboratorio Central de Microbiologia: Tegucigalpa
- Laboratorios de Hospitales Nacionales: Hospital Escuela (Tegucigalpa), Hospital San

 Felipe (Tegucigalpa), Hospital Mario Catarino Rivas (Rivas, San Pedro), Hospital Del Sur (Choluteca)

Figura HON 1. Laboratorios participantes en la red de vigilancia de la resistencia, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

El laboratorio Nacional de Bacteriología, coordina el programa nacional de control de calidad en su red, en el cual participan 16 laboratorios públicos, privados y de seguridad social de todo el país, de los cuales solo respondieron en el tiempo requerido 14 laboratorios, lo que representa el 87 % de participación, en donde 4 de ellos, son hospitales nacionales forman parte de la red de vigilancia.

En este programa se envían 3 cepas desconocidas, dos vez al año para que los laboratorios las identifiquen y realicen el antibiograma, se da un tiempo máximo de respuestas de 30 días a partir de la recepción del envió.

Cuadro HON 1. Especies en viadas para la evaluación del desempeño

1er. Semestre	2do. Semestre
Salmonella spp. (productora de BLEE)	Serratia marcescens (AMP resistente)
Pseudomonas aeruginosa ATCC 27853	Enterococcus faecium (AMP resistente)
Enterococcus faecalis ATCC 29212	Acinetobacter baumanii (productor de AmpC)

Los resultados de esta evaluación se observan en los cuadros HON 2 y 3.

Cuadro HON 2. Resultado de la evaluación del desempeño. Concordancia entre el laboratorio de Referencia y las instituciones participantes en la Red de Vigilacia Cuatro laboratorios de hospitales nacionales

77. 1 1 1. 1. 1	Conco	ordancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (N=24)		
Género y especie correcto	10	42
Género correcto	12	50
Género correcto y especie incorrecta	2	8
Género incorrecto	0	0
Tamaño del halo de antibiograma (N=144)		
Antibióticos dentro del rango de referencia	112	78
Antibióticos fuera del rango de referencia	20	14
Antibióticos no probados	12	8
Interpretación del resultado del antibiograma (N=144)*	·	
Sensible	77	93
Resistente	55	90
Intermedia	12	8
Errores (N=8)		
Menor	4	3
Grave	2	1.4
Muy grave	2	1.4

^{*} De los 144 antibiogramas realizados, 83 deberían haber sido informados como S y 61 como R. El diagnóstico microbiológico y el tamaño de los halos de inhibición se calcularon en base a las dos encuestas anuales

Cuadro HON 3. Resultados de la evaluación del desempeño. Concordancia entre el laboratorio de Referencia y las instituciones que NO participantes en la red de vigilancia.

Laboratorios de hospitales nacionales

Ting do nonche consulte de	Conce	ordancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (N=60)	·	
Género y especie correcto	29	48
Género correcto	21	35
Género correcto y especie incorrecta	10	17
Género incorrecto	0	0
Tamaño del halo de antibiograma (N=437)		
Antibióticos dentro del rango de referencia	380	87
Antibióticos fuera del rango de referencia	47	11
Antibióticos no probados	10	2
Interpretación del resultado del antibiograma (N=437)*		
Sensible	253	95
Resistente	159	92
Intermedia	25	9
Errores (N=32)	·	
Menor	13	3
Grave	11	2.5
Muy grave	8	2

^{*}De los 437 antibiogramas realizados, 265 deberían haber sido informados como S y 172 como R. El diagnóstico microbiológico y el tamaño de los halos de inhibición se calcularon en base a las dos encuestas anuales

La interpretación de los antibiogramas y los errores se calcularon en base a dos encuestas.

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro HON 4. Salmonella por serotipos

Constina	Nio	C	IΡ	Al	MР	AN	ΛС	('	ГΧ	CAZ		
Serotipo	IN .	I	R	I	R	I	R	I*	R	I*	R	
Salmonella spp.	37	0	5	0	8	0	8	0	0	0	0	

^{*} Solo en caso de que sean BLEE-

Cuadro HON 5. Shigella por especies

Eamaoia	Nº	C	IP	Al	MР	AN	ΛС	C	ГХ	CAZ		
Especie		I	R	I	R	I	R	I*	R	I*	R	
Shigella spp	11	0	0	0	8/11	0	7/11	0	0	0	0	

^{*} Solo en caso de que sean BLEE-

Cuadro HON 6. Escherichia coli (infección urinaria baja no complicada)

Sexo	Edad	Nº	Al	MР	AN	ИС	CI	ΞP	GI	EN	AN	ЛΚ	C	IP	SZ	KΤ	N	ΙΤ
Sexo	(años)	IN	Ι	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	≤14	67	0	94	0	57	0	14	0	24	0	10	0	16	0	71	0	25
M	15 a 60	44	0	93	0	55	0	13	0	16	3	0	0	36	0	56	0	9
	> 60	120	0	94	0	93	0	10	0	20	0	7	0	81	0	68	0	15
	≤14	217	0	93	0	61	0	15	0	25	0	12	0	18	0	78	0	25
F	15 a 60	384	0	80	0	68	12	12	0	25	0	5	1	32	0	71	0	14
	> 60	601	0	93	11	66	0	14	0	25	0	7	0	26	0	72	0	23

Cuadro HON 7. Staphylococcus aureus

No	PEN	OXA		VAN*	ERI CLI		VAN1 TCY		CIP		SXT		GEN					
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R
230	96	2	25	100	8	34	4	13	0	0	6	16	5	12	0	13	0	30

^{*}Por antibiograma solo existe categoría S

Cuadro HON 8. Staphylococcus spp. coagulasa negativa

	Nº -	PEN	I OXA		VAN*	VAN* ERI		CLI		VAN1		TCY		CIP		SXT		GEN	
	IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R
ĺ	127	88	0	77	100	5	66	1	42	0	0	3	19	6	30	0	76	0	67

^{*}Por antibiograma solo existe categoría S

Cuadro HON 9. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N1	CX	M1	CT	X1	E	RI	C	LI	SZ	ΧT	CI	IL	TO	CY	VA	N
(años)	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6	5	0	0	0	0	0	0	0	0	4/5	0	0	0	2/5	0	0	0	0	0	0
≥6	6	0	0	0	0	0	0	0	0	4/6	0	0	0	3/6	0	0	0	3/6	0	0

^{*} Resistente ≤19 mm; ¹Solo por CIM

Cuadro HON 10. Haemophilus influenzae (aislamientos invasivos)

Edad	No	Al	MР	CTX	AZM	CIP	SZ	ΚΤ		I L
Edad	IN	I	R	S*	S*	S*	I	R	I	R
< 6 años	2	0	0	100	100	100	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro HON 11. Streptococcus \(\beta\)-hemolítico

Vio	PEN	C	LI	ERI				
IN	S*	I	R	I	R			
142	100	0	18	0	25			

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

¹ Solo por CIM

¹ Solo por CIM

Microorganismos de origen hospitalario

Cuadro HON 12. Escherichia coli

Nº	Al	MP	Al	ИC	Cl	EP	TZ	ZΡ	C	ГХ	CA	١Z	Fl	EΡ	IP	M	CI	-IL	C	IΡ	SZ		N	IT
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
817	0	87	0	44	24	76	6	11	0	32	3	28	0	38	0	1	0	16	0	41	1	75	4	8

^{*} Solo en caso de que sean BLEE-

Cuadro HON 13. Klebsiella pneumoniae

Nº	Al	MP	AN	ΛС	TZ		C	ГХ	CA	١Z	FI	ΞP	IP	M	CI	ΉL	С	IP	SZ		N	IT
IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
559	0	100	22	49	17	22	0	58	0	67	1	66	0	2	2	44	6	30	0	60	18	46

^{*} Solo en caso de que sean BLEE-

Cuadro HON 14. Enterobacter spp.

Nº	Al	ИP	AN	ΛС	TZ	TZP		ГΧ	CA	٩Z	FI	ΞP	IP	Μ	CI	I L	C	ΙP	SΣ	ζT	N	IT
IN	Ι	R	I	R	I	R	I	R	I	R	I	R	Ι	R	Ι	R	I	R	I	R	I	R
116	0	93	0	74	13	10	0	45	6	54	3	27	1	0	4	37	11	15	0	65	7	53

Cuadro HON 15. Staphylococcus aureus

Nº	PEN	O	ΚA	VAN*	El	RI	C	LI	VA	N1	TO	CY	CI	I L	С	IP	SZ	ΥT	GI	EN
IN	R	Ι	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
710	95	1	33	100	3	40	2	24	0	0	12	19	0	42	2	20	0	14	0	28

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro HON 16. Staphylococcus spp. coagulasa negativa

No	PEN	O	ΚA	VAN*	E	RI	C	LI	VA	N^1	TO	CY	CI	HL.	С	IP	SX	KΤ	GI	EN
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
344	93	0	86	100	2	81	0	60	0	0	8	19	0	47	5	52	0	78	0	67

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro HON 17. Enterococcus spp.

,	N TO		ΜР	VA	AN
1	IN	I	R	I	R
1	28	0	0	0	2

Cuadro HON 17. Acinetobacter baumannii

Nº	SA	M	TZ	ZP	CA	١Z	Fl	ΞP	IP	M	C	L^1	GI	EN	C	IΡ	AN	ЛK
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
46	0	0	0	29	6	34	9	34	0	22	0	0	0	23	2	16	0	0

¹Informar solo cuando se hace por CIM

Cuadro 16. Pseudomonas aeruginosa

Nº	P	IP	TZ	ZP	CA	١Z	IP	M	GI	EN	AN	ЛK	FI	ΞP	C	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
548	0	43	0	24	4	32	3	20	0	39	4	39	0	27	0	24

MÉXICO

SISTEMA DE VIGILANCIA

El Laboratorio Nacional de Referencia para patógenos entéricos es parte del Instituto de Diagnóstico y Referencia Epidemiológica (InDRE), Secretaría de Salud. Los 31 laboratorios estatales de salud pública son parte de la red y envían las muestras al InDRE para confirmación de su identificación bioquímica, serológica y la realización del antibiograma. Todos los estados participan de la vigilancia de la resistencia

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro MEX 1. Especies enviadas para la evaluación del desempeño, 2008

1er. semestre	2do. semestre
Vibrio cholerae	Vibrio cholerae
Vibrio parahaemolyticus	Vibrio parahaemolyticus
Aeromonas caviae	Vibrio Vibrio mimicus
Salmonella spp (diferentes grupos)	Salmonella spp (diferentes grupos)
Shigella spp (diferente especie)	Shigella spp (diferente especie)
Escherichia coli	Edwarsiella tarda

En los cuadros MEX 2 y 3 se muestran los resultados de la evalución del desempeño de las instituciones participantes en la red de vigilancia correspondientes al primer y segundo trimestre de 2008.

Cuadro MEX 2. Resultados de la evaluación del desempeño del primer semestre, 2008

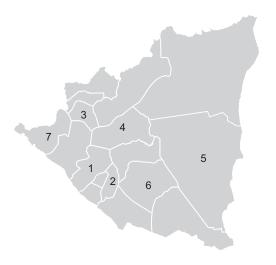
Tipo de prueba y resultado	Conco	rdancia
Tipo de prueoa y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº = 620)		
Género y especie correctos	377	60.8
Género correcto	163	26.3
Género correcto y especie incorrecta	53	8.5
Género incorrecto	27	4.4

Cuadro MEX 3. Resultados de la evaluación del desempeño del segundo semestre, 2008

Tino do menoho v nomitodo	Conco	rdancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº = 620)		
Género y especie correctos	400	64.5
Género correcto	195	31.4
Género correcto y especie incorrecta	15	2.4
Género incorrecto	10	1.6

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario


Cuadro MEX 4. Salmonella por serotipos**

		C	IP	N/	AL	Al	MР	AN	ИС	C	ГХ	CA	٩Z	CI	ΗL	SΣ	ďΤ	N	IT	T	ET
Serotipo	N°	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
Enteritidis	191	2	0	5	27	0.5	5	1	2	0.5	1	0	2	2	3	2	9	38	35	5	11
Typhimurium	168	4	0	8	11	0	51	5	13	3	20	2	19	0	61	5	39	11	10	10	64
Salmonella spp	141	2	0	2	3	0.7	3	0.7	0	0	0	0	0	0.7	3	4	1	3	0.7	3	9
Anatum	85	1	0	1	6	1	7	0	0	2	0	0	0	0	4	1	2	0	1	20	8
Newport	74	0	0	4	5	0	12	1	1	0	8	3	8	0	15	8	7	4	7	8	19
Weltevreden	72	1	0	1	3	0	6	0	1	1	1	0	1	1	1	0	4	6	8	7	3
Oranienburg	35	3	0	3	3	0	31	0	0	3	0	0	0	0	3	3	3	3	0	26	11
Agona	34	0	0	0	6	0	0	0	0	0	0	0	0	3	9	9	6	6	3	15	29
Saintpaul	34	0	0	24	0	3	18	0	0	0	0	0	0	0	9	0	15	0	6	32	15
Muenchen	33	0	0	9	0	0	0	0	0	3	0	0	0	0	6	0	0	0	0	18	9
Infantis	28	1/28	0	3/28	1/28	1/28	1/28	0	0	0	1/28	0	0	0	1/28	0	3/28	1/28	0	6/28	10/28
Hadar	24	1/24	0	0	9/24	0	0	0	0	0	0	0	0	0	1/24	0	9/24	7/24	4/24	1/24	19/24
Javiana	24	0	0	0	0	0	1/24	0	0	0	0	0	0	0	0	0	0	2/24	0	2/24	3/24
Braenderup	22	0	0	1/22	2/22	0	0	0	0	0	0	0	0	0	0	1/22	0	1/22	1/22	5/22	0
Give	12	0	0	0	1/12	0	3/12	NT	NT	0	0	NT	NT	0	1/12	0	0	0	0	1/12	1/12
Montevideo	12	0	0	0	0	0	1/12	0	0	0	0	0	0	0	0	0	0	1/12	0	3/12	1/12
Muenster	12	1/12	0	0	1/12	0	0	0	0	1/12	0	0	0	0	6/12	1/12	7/12	0	0	0	7/12
Meleagridis	11	0	0	2/11	0	0	0	0	0	1/11	0	0	0	1/11	1/11	1/11	1/11	1/11	1/11	0	2/11
Minnesota	10	0	0	5/10	0	0	5/10	0	0	0	0	NT	NT	0	0	0	0	0	0	4/10	0
Poona	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1/9	1/9
Albany	8	0	0	1/8	1/8	0	0	0	0	0	0	0	0	0	0	0	2/8	4/8	1/8	2/8	2/8
Derby	8	2/8	0	0	2/8	0	0	0	0	1/8	0	0	0	1/8	0	2/8	3/8	2/8	0	0	7/8
Kentucky	8	0	0	0	0	0	1/8	0	0	0	0	NT	NT	0	0	0	0	0	0	0	2/8
Bareilly	7	0	0	0	0	0	2/7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Panama	7	0	0	0	0	0	0	0	0	0	0	0	0	1/7	1/7	1/7	1/7	1/7	1/7	1/7	1/7
Senftenberg	7	0	0	0	0	0	1/7	0	0	0	0	0	0	0	2/7	0	2/7	0	0	0	2/7
Abony	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brandenburg	4	2/4	0	0	2/4	0	2/4	0	1/4	0	1/4	0	1/4	0	2/4	0	2/4	0	2/4	0	2/4
Irumu	4	0	0	0	0	0	0	0	0	0	0	0	0	1/4	0	1/4	0	0	0	0	0
Ohio	4	0	0	0	0	0	1/4	NT	NT	0	0	NT	NT	1/4	0	1/4	0	1/4	0	0	0
Reading	4	0	1/4	0	2/4	0	0	0	0	0	0	0	0	0	0	0	3/4	0	3/4	0	4/4
Bovismorbificans	3	0	0	0	0	0	0	0/3	0	0	0	0	0	0	0	1/3	0	0	1/3	0	1/3
Kiambu	3	0	0	0	0	0	1/3	NT	NT	0	0	NT	NT	0	0	0	0	0	0	0	0
Thompson	3	0	0	0	0	2/3	0	0	0	0	0	0	0	0	2/3	0	0	1/3	0	0	2/3
Adelaide	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bredeney	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1/2	1/2	0	0	0	0	1/2
Duesseldorf	2	0	0	0	1/2	0	0	0	0	0	0	0	0	0	0	0	0	0	1/2	0	0
Havana	2	0	0	0	0	0	1/2	0	0	0	0	0	0	0	0	0	1/2	0	0	0	1/2

NICARAGUA

SISTEMA DE VIGILANCIA

La red de laboratorios para la vigilancia de la resistencia antimicrobiana en Nicaragua esta constituida por 11 laboratorios, siendo el Laboratorio Nacional de Referencia el Centro Nacional de Diagnostico y Referencia (CNDR), del Ministerio de Salud. La ubicación de los laboratorios participantes se muestra en figura NIC 1.

	Departamento ou Región	Instituciones
		Hospital Antonio Lenin Fonseca
1	Managua	Hospital Berta Calderón
		Centro Nacional de Daignóstico y Referencia
2	Granada	Hospital Amistad Japón Nicaragua
	Granaua	Centro Epidemiológico Intersilais
3	linataga	Hospital Victoria Motta
3	Jinotega	Laboratório Tecnológico
4	Matagalpa	Laboratório Epidemiológico
5	Bluefields	Hospital Ernesto Sequeira Bianco
6	Boaco	Hospital José Newbroski
7	Chinandega	Hospital Mauricio Abdalah

Figura NIC 1. Laboratorios participantes en la red de vigilancia de la resistencia

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro NIC 1. Especies enviadas para evaluación del desempeño

Año 2008
066 Citrobacter freundi
067 Escherichia coli
068 Achromobacter xylosoxidans
069 Arcanobacterium haemolyticus
070 Enterococcus faecium

Cuadro NIC 2. Evaluación del desempeño en las instituciones participantes

Tr. I I I I	Conco	rdancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº = 45)		
Género y especie correctos	21	47
Género correcto	3	7
Género correcto y especie incorrecta	2	4
Género incorrecto	19	42
Tamaño del halo del antibiograma (Nº =124)		
Dentro del rango de referencia	82	66
Fuera del rango de referencia	42	34
Interpretación del resultado del antibiograma (*N=124)		
Sensible	59	86
Resistente	48	100
Intermedio	5	84
Errores (N° =10)		
Menor	8	6
Grave	2	2
Muy Grave	0	0

^{*} De las 124 pruebas realizadas, 69 deberían haber sido informadas como S, 48 como R y 6 como I

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro NIC 3. Salmonella por serotipos

C4i	Nº	C	ΙP	N.	AL	Αľ	MР	AN	ИС	Cl	ГΧ	CA	٩Z	CI	IL	SZ	ΚT	N	ΙΤ	TI	ΞТ
Serotipo	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R
S. Infantis	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Heidelberg	1	0	0	0	1/1	0	1/1	0	0	0	0	0	0	0	0	0	1/1	0	1/1	0	0
S. Typhimurium	3	0	0	0	1/3	0	1/3	0	0	0	0	0	0	0	0	0	1/3	0	1/3	0	0
S. Montevideo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Panama	3	0	0	0	1/3	0	1/3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Braenderup	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Uganda	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Agona	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Chester	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Kingston	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Newport	3	0	0	0	1/3	0	1/3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S.Javiana	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salmonella spp.	4	0	0	0	0	0	1/4	0	1/4	0	1/4	0	1/4	0	0	0	0	0	1/4	0	1/4

^{*}Solo en caso de que sean BLEE-

Cuadro NIC 4. Shigella por especies

Egnacia	Nº	С	IP	N/	AL	Al	MP	AN	ИС	('	ГΧ	C	AΖ	CI	HL	SZ	ΚT	N	ΙΤ	TI	ΞT
Especie	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R
S. flexneri	3	0	0	0	0	0	3/3	0	0	0	0	0	0	0	2/3	0	2/3	0	0	0	0
S. sonnei	4	0	0	0	1/4	0	4/4	0	0	0	1/4	0	1/4	0	0	0	3/4	0	0	0	0

^{*} Solo en caso de que sean BLEE-

Cuadro NIC 5. Escherichia coli (infección urinaria baja no complicada)

Sexo	Edad	Nº	Al	MР	AN	ΛС	C	EP	GI	EN	AN	ИΚ	C	IP	SZ	ΧT	N	IT
Sexo	Edad	1 1	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
М	15 a 60	17	0	16/17	1/17	4/17	1/17	3/17	1/17	5/17	1/17	3/17	0	8/17	0	14/17	0	2/17
IVI	> 60	20	1/20	18/20	1/20	3/20	1/20	11/20	0	9/20	0	1/20	0	16/20	0	17/20	0	1/20
	≤14	17	0	13/17	1/17	4/17	2/17	7/17	0	4/17	0	0	0	4/17	0	10/17	0	1/17
F	15 a 60	259	6	78	24	29	26	50	2	24	1	3	0	35	1	66	6	11
	> 60	93	1	88	13	46	23	66	3	33	1	3	0	63	0	70	7	17

Cuadro NIC 6. Neisseria meningitidis (solo por CIM)

NTO.	PE	EN
IN .	I	R
1	0	0

Cuadro NIC 7. Staphylococcus aureus

Nº	PEN	O	ΚA	FOX	VAN*	E	RI	C	LI	Mì	ON	TO	CY	CI	I L	С	IP	SX	KΤ	GF	EN
11	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
39	96	0	19	19	100	3	53	0	19	6	11	9	18	0	4	0	16	0	18	0	14

^{*}Por antibiograma solo existe categoría S

Cuadro NIC 8. Staphylococcus spp. coagulasa negativa

Nº	PEN	0	XA	FOX	VAN*	E	RI	С	LI	M	NO	TO	CY	CI	IL	С	IP	SZ	ζT	Gl	EN
IN-	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
26	19/26	0	5/26	5/26	26/26	3/26	15/26	0	3/26	0	5/26	0	7/26	0	0	0	9/26	0	13/26	0	5/26

^{*}Por antibiograma solo existe categoría S

Cuadro NIC 9. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PF	N^1	CR	$2O^1$	E	RI	SΣ		CI	HL	R	IF	VA	λN
(años)	IN IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6	5	3/5	0	2/5	1/5	0	0	0	0	5/5	0	3/5	0	0	0	0
≥6	4	1/4	0	1/4	0	0	0	2/4	0	3/4	0	3/4	0	0	0	0

^{*} Resistente ≤19 mm;

Cuadro NIC 10. Haemophilus influenzae (aislamientos invasivos)

Edad	Vio	AN	ЛP	CRO	SY	ΥT	CF	I L
Edad	IN	I	R	S*	I	R	I	R
< 6 años	1	0	0	1	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro NIC 11. Streptococcus β-hemolítico

N 10	PEN	C	LI	E	RI
IN	S*	I	R	I	R
23	23/23	0	0	0	7/23

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Microorganismos de origen hospitalario

Cuadro NIC 12. Escherichia coli

Nº	Αľ	MΡ	AN	ΛС	Cl	EP	TZ	ZΡ	C	ГΧ	C	٩Z	FI	ΞP	ΙP	M	ΜI	EΜ	N/	٩L	CI	IL	С	IΡ	SZ	ΥT	N	ΙΤ
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	Ι	R
714	5	87	20	32	27	56	1	7	0	0	0	0	0	0	0	0	0	0	0	63	5	5	0	60	0	72	5	8

^{*}Solo en caso de que sean BLEE-

Cuadro NIC 13. Klebsiella pneumoniae

NIO	Al	MP	AN	ИС	CI	EΡ	TZ	ZΡ	C	ГΧ	CA	١Z	FI	ΞP	IP	M	MI	ЕМ	N/	٩L	CI	IL	C	IΡ	SΣ	ζT	N	П
IN	I	R	Ι	R	Ι	R	Ι	R	I*	R	I*	R	Ι	R	Ι	R	I	R	Ι	R	Ι	R	Ι	R	Ι	R	Ι	R
172	0	100	7	10	13	13	0	8	0	0	0	0	0	0	0	0	0	0	0	19	0	0	3	23	0	36	13	56

^{*}Solo en caso de que sean BLEE-

¹Solo por CIM

Cuadro NIC 14. Enterobacter spp.

NIO	Al	MΡ	ΑN	ИС	Cl	EP	Tz	ZΡ	Cl	ГХ	C	٩Z	Fl	ΞP	ΙP	M	MI	ЕМ	N	٩L	CI	IL.	С	ΙP	SZ	KΤ	N	ΙΤ
IN	Ι	R	Ι	R	Ι	R	I	R	Ι	R	Ι	R	I	R	I	R	Ι	R	I	R	Ι	R	Ι	R	I	R	Ι	R
173	3	77	8	63	17	52	0	0	0	0	0	0	0	0	0	0	0	0	0	30	0	13	3	29	0	46	0	14

Cuadro NIC 15. Staphylococcus aureus

N 10	PEN	O2	ΚA	FOX	VAN*	E	RI	C.	LI	Mì	ON	TO	CY	CI	HL	С	IP	SX	ΚT	GI	EN
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R
559	99	0	60	60	100	0	60	0	5	3	0	0	27	0	30	0	55	0	3	0	48

^{*}Por antibiograma solo existe categoría S

Cuadro NIC 16. Staphylococcus spp. coagulasa negativa

N TO	PEN	O2	ΚA	FOX	VAN*	E	RI	C	LI	Mì	ON	TO	CY	CI	HL	С	IP	SZ	ΥT	GI	EN
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
437	97	0	66	66	100	0	63	0	53	3	0	0	38	1	31	0	57	0	14	0	49

^{*}Por antibiograma solo existe categoría S

Cuadro NIC 17. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Eamania	Nº	AN	ſΡ*	VA	AN	GI	EH	ST	H
Especie	IN	I	R	I	R	I	R	I	R
E. faecalis	43	0	0	0	0	0	0	0	44
E. faecium	8	0	8/8	0	0	0	5/8	0	0
Enterococcus spp.	14	0	1/14	0	1/14	0	6/14	0	4/14

Cuadro NIC 18. Acinetobacter baumannii

Nº	SA	M	TZ	ZP	CA	١Z	Fl	EΡ	IP	M	MI	EM	GI	EN	С	IP	SZ	ΚT	AN	ЛK
IN.	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
393	12	20	25	29	4	89	4	89	2	16	4	16	5	80	1	87	2	88	2	68

Cuadro NIC 19. Pseudomonas aeruginosa

Nio	P	ΙP	TZ	ZP	CA	١Z	IP	M	MI	EM	AZ	ZT	GI	EN	AN	ЛΚ	FI	EΡ	C	ΙP
IN IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
582	0	51	0	33	7	34	3	17	4	20	29	38	8	53	2	22	10	41	2	53

PANAMÁ

SISTEMA DE VIGILANCIA

La Red Nacional de Vigilancia de resistencia a los antimicrobianos de Panamá, la conforman 24 laboratorios de hospitales, pertenecientes a Instituciones Públicas y Privadas de todo el país. El Laboratorio coordinador de la red es el Laboratorio Central de Referencia en Salud (LCRSP) del Instituto Conmemorativo Gorgas de Estudio de la Salud (ICGES).

	Províncias	Centros hospitalarios
		Complejo Hospitalario Metropolitano Dr A.A. Madrid. CSS.
	5 (11)	Hospital del Niño
	Panamá Metro Centros gubernamentales	Patronato del Hospital Santo Tomás
	Certifos guberriarrieritales	Instituto Oncológico Nacional
1		Hospital de Especialidades. Pediátricas. CSS
		Hospital San Fernando
	Panamá Metro	Hospital Centro Médico Paitilla
	Instituiciones privadas	Hospital Nacional
		Hospital Integrado San Miguel Arcángel Arcangel
2	Panamá Oeste	Hospital Nicolás A. Solano
3	Panamá Este	Hospital Regional de Chepo
4	Colón	Hospital Amador Guerrero
5	Coclé	Hospital Aquilino Tejeira
J	Code	Hospital Rafael Estévez
6	Herrera	Hospital Cecilio Castillero
-	l lellela	Hospital El Vigía
7	Los Santos	Hospital Joaquín Pablo Franco
8	Veraguas	Hospital Luis Chicho Fábrega
0	veraguas	Hospital Reg. De Soná E. Abadía
		Hospital José D. De Obaldía
9	Chiriquí	Hospital Reg. Rafael Hernández
		Hospital Dionisio Arrocha
10	Bocas del Toro	Hospital De Changuinola

Figura PAN 1. Mapa de la Republica de Panamá dividido por Provincias.

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro PAN 1. Especies enviadas para evaluación del desempeño

1er. semestre	2do. semestre
Staphylococcus aureus (ORSA)	Klebsiella oxytoca BLEE +
Shigella flexneri	Acinetobacter baumannii
Enterococcus casseliflavus	Streptococus pneumoniae SDP

Cuadro PAN 2. Resultados de la evaluación del desempeño de las instituciones participantes en la red

Time do non de consente de	Conco	ordancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº =120)		
Género y especie correctos	99	82.5
Género correcto	10	8.3
Género correcto y especie incorrecta	10	8.3
Género incorrecto	1	0.8
Tamaño del halo del antibiograma (Nº =714)		
Dentro del rango de referencia	659	92.3
Fuera del rango del referencia	55	7.7
Interpretación del resultado del antibiograma *		
Sensible	305	95.6
Resistente	354	89.6
Intermedio	0	0
Errores (N° =55)		
Menor	2	0.3
Grave	12	1.7
Muy Grave	41	5.7

^{*} De las 714 pruebas realizadas, 319 deberían haber sido informadas como S, 395 como R y 0 como I

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro PAN 3. Salmonella spp.

Nio	C	IP	N/	AL	Al	MP	AN	ИC		ГΧ	CA	٩Z	CI	-IL	S	ζT
IN.	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R
85	4	1	3	7	2	14	2	4	0	0	0	0	0	2	0	10

^{*} Solo en caso de que sean BLEE-

Cuadro PAN 4. Shigella por especies

Especie	Ν°	C	IP	N/	AL.	Al	MP	AN	ИС	C	ΓX	CA	١Z	CI	I L	SZ	ΧT	Tl	EΤ
Especie	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
S.flexneri	18	0	0	5/18	3/18	0	15/18	3/18	10/18	0	0	0	0	0	0	0	10/18	2/18	14/18
S.boydii	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1/1	0
S.sonnei	25	0	0	1/25	0	0	10/25	1/25	4/25	0	0	0	0	0	0	0	12/25	0	13/25
Shigella spp.	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*} Solo en caso de que sean BLEE-

Cuadro PAN 5. Neisseria meningitidis (solo por CIM)

ſ	NIO	PE	EN	CTX	()	-IL	C	IΡ	R	IF	S	KΤ
	IN	I	R	S*	I	R	I	R	I	R	I	R
ſ	28	0	0	100	0	0	0	0	0	0	0	100

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro PAN 6. Staphylococcus aureus

N	PEN	0	XA	FOX	VAN*	E	RI	С	LI	VA	N^1	TO	CY	С	ΙP	SZ	ΥT	GI	EN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	Ι	R	I	R	I	R	Ι	R	I	R
100	5 90	0	35	23	100	3	30	1	28	0	0	0	15	1	23	0	10	1	12	2	2

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro PAN 7. Staphylococcus spp. coagulasa negativa

Nº	PEN	O	ΚA	VAN*	E	RI	С	LI	VA	N^1	TO	CY	C	IΡ	SZ	ΧT	GI	EN	R	IF
11	R	Ι	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
801	80	0	58	100	2	48	0	41	0	0	1	16	0	40	1	35	10	25	1	2

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro PAN 8. Neisseria gonorrhoeae

N10	PE	EN	ß-lact	amasa	CTX	C	IΡ	TO	CY
IN	I	R	POS	NEG	S*	I	R	I	R
3	0	0	0	0	100	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro PAN 9. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Νo	OXA	PE	N^1	CT	X^1	E	RI	C	LI	SΣ	KΤ	CI	-IL	TO	CY	VA	ΛN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
< 6 años	18	5/18	1/18	1/18	0	0	0	1/18	0	1/18	1/18	6/18	0	0	0	1/18	0	0
≥6 años	25	6/25	1/25	1/25	0	0	0	0	0	2/25	0	0	2/25	4/25	0	3/25	0	3

^{*} Resistente ≤19 mm

Cuadro PAN 10. Haemophilus influenzae (aislamientos invasivos)

Edad	N°	Antibióticos
< 6 años	1	No fueron evaluados
≥ 6 años	1	No fueron evaluados

Cuadro PAN 11. Streptococcus β-hemolítico

N TO	PEN	C	LI	El	RI	TC	CY
IN	S*	I	R	I	R	I	R
45	100	0	5	0	4	0	75

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

¹Solo por CIM

Microorganismos de origen hospitalario

Cuadro PAN 12. Escherichia coli

NIo	Al	MР	AN	ИС	C	EP		ZP	C	ſΧ	CA	٩Z	FI	EΡ	IP	M	MI	EM	N	AL	C	IΡ	SZ	ďΤ	N	ΙT	TO	CY
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2.910	1	80	8	6	4	10	2	2	5	10	6	8	4	10	0	0	0	0	1	28	1	31	0	65	2	2	1	34

^{*}Solo en caso de que sean BLEE-

Cuadro PAN 13. Klebsiella pneumoniae

NI ₀	Al	MP	AN	ИС	Cl	EP	TZ	ZP	C	ΓX	CA	ΛZ	FI	ΞP	IP	M	MI	ΞM	С	IP	SZ	KΤ	TO	
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R
1.721	1	99	8	10	3	16	10	5	5	25	2	39	3	21	1	0	0	0	0	30	1	45	0	11

^{*}Solo en caso de que sean BLEE-

Cuadro PAN 14. Enterobacter spp.

Nio	Al	MР	AN	ΛС	C	EP	TZ	ZP	C	ГХ		ΛZ	FF	ΞP	IP	M	MI	EM	С	IP	SΣ	KΤ	N	IT
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
917	3	93	3	79	2	85	13	22	10	25	3	26	1	10	1	0	0	0	1	25	0	30	15	25

Cuadro PAN 15. Staphylococcus aureus

No	PEN	02	ΚA	FOX	VAN*	E	RI	C	LI	VA	N1	TO	CY	С	IP	SZ		GI	EN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2.619	91	0	32	25	100	2	30	1	28	0	0	0	10	0	21	0	5	1	9	0	3

^{*}Por antibiograma solo existe categoría S; 1 Solo por CIM

Cuadro PAN 16. Staphylococcus spp. coagulasa negativa

No	PEN	O	ΚA	VAN*	E	RI	C	LI	VA	.N¹	TO		C	IP	S	ζT	GI	EN	R	IF
IN	R	I	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
621	78	0	51	100	3	40	20	25	0	0	1	15	1	23	0	25	4	17	1	6

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro PAN 17. Enterococcus faecalis, Enterococcus faecium y *Enterococcus* spp. (no identificados)

Especie	N°	AN	1P*	V/	AN
Especie	IN .	I	R	I	R
E. faecalis	602	0	1	0	1
E. faecium	121	0	39	1	1
Enterococcus spp.	62	0	41	0	1

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro PAN 18. Acinetobacter baumannii

Nº	SA	M	TZ	ZΡ	CA	١Z	Fl	EΡ	IP	M	MI	EM	Gl	ΞN	C	IP	S	ζT	AN	ИK
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2.018	10	66	4	62	5	73	3	79	0	75	0	74	9	72	1	82	0	84	31	40

Cuadro PAN 19. Pseudomonas aeruginosa

Nº	P	IP		ZP	CA	٩Z	IP	M	MI	EM	GI	EN	AN	ЛK	FI		C	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1.716	0	31	0	15	9	32	4	33	7	21	10	25	4	21	15	23	0	39

PARAGUAY

SISTEMA DE VIGILANCIA

La red de vigilancia actualmente está constituida por 21 centros, de los cuales 9 corresponden a instituciones públicas y 12 a privadas. El laboratorio coordinador de la red es el Laboratorio Central de Salud Pública (LCSP).

	Ciudad	Laboratorios
		Instituto de Previsión Social
		Hospital de Clínicas
		Centro de Emergencias Médicas
		Instituto de Medicina Tropical
1	Asunción	Instituto Nacional de Enfermedades Respiratorias y del Ambiente
		Cruz Roja Paraguaya
		Curie
		Centro Médico Bautista
		Laboratorio Dias Gill
		Meyerlab
		La Costa
		Centro Materno Infantil
2	Central	Hospital General Pediátrico
		Hospital Nacional
3	Boguerón	Hospital Filadelfia
3	Doqueton	Hospital Loma Plata
4	Alto Paraná	Laboratorio de Especialidades Bioquímicas
5	Guairá	CEDIPAS
Ü	Gualia	BIOMED
6	Ñeembucú	Laboratório San Antonio
7	Itapúa	Laboratório Braun

Figura PAR 1. Instituciones participantes, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

El LCSP coordina la Evaluación Externa de Desempeño en Bacteriología. En el 2.009 se realizó un envio de 6 cepas a 21 laboratorios, según cuadro PAR 1.17 laboratorios respondieron la encuesta dentro del tiempo requerido. Los resultados de esta evaluación se muestran en el cuadro PAR 2.

Cuadro PAR 1. Especies enviadas para evaluación de desempeño

Enterococcus casseliflavus
Klebsiella oxytoca
Staphylococcus aureus
Salmonella Enteritidis
Enterococcus faecium
Streptococcus pyogenes

Cuadro PAR 2. Resultados de evaluación del desempeño de las Instituciones participantes

Ti J	Conco	ordancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº = 85)	·	
Género y especie correctos	69	81.2
Género correcto	9	10.6
Género correcto y especie incorrecta	4	4.7
Género incorrecto	3	3.5
Tamaño del halo del antibiograma (Nº = 317)		
Dentro del rango de referencia	302	95.3
Fuera del rango de referencia	15	4.7
Interpretación del resultado del antibiograma *	·	
Sensible	209	96.8
Resistente	68	81
Intermedio	17	100
Errores ($N^{\circ} = 317$)		
Menor	4	1.3
Grave	7	2.2
Muy Grave	12	3.8

^{*} De las 317 pruebas realizadas, 216 deberían haber sido informadas como S, 84 como R

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro PAR 3. Salmonella por serotipos

Serotipo	N°	С	IP	N/	AL	Al	MP	Al	ИC	C	ГХ	Cl	-IL	SZ	ΚΤ	N	IT	TI	ET
Seroupo	IN .	I	R	I	R	I	R	I	R	I*	R	I	R	I	R	I	R	I	R
S. Enteritidis	80	0	0	1	59	0	1	1	0	0	1	0	0	0	0	11	70	0	93
S. Saintpaul	16	0	0	0	0	0	3/16	0	2/16	0	2/16	0	0	0	0	0	1/16	1/16	1/16
S. Typhimurium	16	0	0	0	6/16	0	1/16	1/16	0	0	0	0	0	0	0	1/16	0	1/16	1/16
S. Newport	13	0	0	0	0	0	1/13	0	0	0	0	0	0	0	0	0	0	0	1/13
S. Braenderup	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. Oranienburg	4	0	0	0	0	0	1/4	0	0	0	0	0	0	0	0	0	0	0	0

Cuadro PAR 4. Shigella por especies

Egnacia	Nº	С	IP	N/	٩L	Al	MР	AN	ΛС	C	ГХ	CI	HL	SZ		N	IT	TI	ΞT
Especie	IN	I	R	I	R	I	R	I	R	I*	R	I	R	I	R	I	R	I	R
S. flexneri	163	0	0	0	0	0	63	36	18	0	0	7	56	0	45	0.6	0.6	0	89
S. sonnei	126	0	0	0	0	3	10	2	3	0	0	2	1	3	90	0	1	1	78

Cuadro PAR 5. Escherichia coli (infección urinaria baja no complicada)

Corro	Edad	Nº	Al	MΡ	AN	ИС	Cl	EΡ	CX	M	GI	ΞN	AN	ЛK	С	IΡ	SZ	ΚT	N.	ΙΤ
Sexo	Edad	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R
	≤14 años	100	2	85	28	7	15	18	2	9	1	17	1	0	0	7	1	50	0	0
M	15 a 60	83	3	74	14	5	16	20	0	9	3	13	2	0	0	32	8	38	4	4
	> 60	116	0	84	16	16	16	35	7	23	0	17	2	0	5	57	6	55	5	5
	≤14	363	1	76	17	6	18	14	0	9	0.3	8	0	0.5	0	0.6	3	40	1	2
F	15 a 60	707	3	59	8	3	17	10	1	6	1	4	1	0.4	1	9	2	36	2	3
	> 60	429	3	72	10	5	18	17	4	12	0.5	10	3	2	2	32	3	46	3	4

Cuadro PAR 6. Neisseria meningitidis (solo por CIM)

N TO	PE	EN	C	IP
IN	I	R	I	R
13	0	1/13	0	0

Cuadro PAR 7. Staphylococcus aureus

	N.TO	PEN	O	ΧA	FOX	VAN*	E	RI	C	LI	TI	EC	TO	CY	CI	I L	С	ΙP	SΣ	ΥT	Gl	ΞN	R	ΙF
	IN	R	I	R	R	S	I	R	I	R	I	R	I	R	Ι	R	I	R	Ι	R	I	R	Ι	R
ĺ	434	93	3	30	29	100	6	20	3	14	0	0	0	6	2	19	3	14	0.5	3	1	24	3	9

^{*}Por antibiograma solo existe categoría S

Cuadro PAR 8. Staphylococcus spp. coagulasa negative

Nº	PEN	O	ΚA	FOX	VAN*	E	RI	С	LI	TI	EC	TO	CY	CI	IL.	С	IP	SZ	KΤ	Gl	ΞN	R	IF
IN	R	I	R	R	S	I	R	Ι	R	I	R	I	R	I	R	Ι	R	I	R	I	R	Ι	R
395	95	0	71	71	100	3	54	4	21	0	0	0.4	16	1	29	7	29	5	33	5	30	3	18

^{*}Por antibiograma solo existe categoría S

Cuadro PAR 9. Neisseria gonorrhoeae

Nº	PH	EN	ß-lacta	amasa¹	CTX	C	IP	TO	CY
IN	I	R	POS	NEG	S*	I	R	I	R
4	0	1/4	1/4	3/4	4/4	1/4	2/4	1/4	1/4

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro PAR 10. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N^1	C	ГХ	E	RI	SZ		CI	HL .	VA	ΛN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R
< 6 años	71	34	0	0	19	1	1	8	6	56	0	1	0	0
≥ 6 años	98	27	0	0	1	2	1	0	13	18	0	0	0	0

^{*} Resistente ≤19 mm; ¹ Solo por CIM

Cuadro PAR 11. Haemophilus influenzae (aislamientos invasivos)

Edad	N ₀	Al	MР	CTX	SZ	ΚΤ	CI	I L
Edad	IN	I	R	S*	I	R	I	R
< 6 años	4	1/4	0	4/4	0	0	4/4	0
≥6 años	3	0	0	3/3	0	0	1/3	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro PAR 12. Streptococcus \(\beta\)-hemolítico

NIO	PEN	C	LI	El	RI	TC	CY
19	S*	I	R	I	R	I	R
158	100	0	3	5	5	5	80

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Microorganismos de origen hospitalario

Cuadro PAR 13. Escherichia coli

NIO																						IΡ						
IN	I	R	I	R	Ι	R	I	R	I*	R	I*	R	Ι	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
915	3	75	16	16	14	35	10	6	0	17	0	15	0	14	0	0	0	0	1	38	2	31	2	49	3	4	0	61

^{*} Solo en caso de que sean BLEE-

Cuadro PAR 14. Klebsiella pneumoniae

Nº	Al	MP	ΑN	ИС	Cl	EΡ	Tz	ZΡ	C	ГΧ	C	٩Z	FI	EΡ	IP	Μ	MI	ΞM	N	AL	C	IΡ	SΣ	ζT	N	ΙΤ	TC	CY
IN	Ι	R	Ι	R	I	R	Ι	R	I*	R	I*	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	Ι	R
964	1	98	18	49	2	73	15	48	0	64	0	64	0	45	0	0.6	0	2.5	5	61	4	50	6	52	6	70	3	17

^{*} Solo en caso de que sean BLEE-

¹ Por Nitrocefin

Cuadro PAR 15. Enterobacter spp.

NIO	Al	MР	Αl	ИC	C	EP	Tz	ZΡ	C.	ГΧ	C	٩Z	Fl	EΡ	IP	Μ	MI	ЕМ	N	AL	С	IΡ	SZ	ΧT	N	ΙT	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
365	1	98	6	89	0	98	9	38	9	47	6	42	6	28	0	0.6	0	2	7	54	4	32	6	27	6	64	0	16

Cuadro PAR 16. Staphylococcus aureus

ſ	Vio	PEN	O2	ΧA	FOX	VAN*	E	RI	С	LI	TI	EC	TO	CY	CF	IL.	С	ΙP	SΣ	ΚT	GI	EΝ	R	IF
	IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R
Γ	1.085	97	0	57	57	100	5	45	2	42	0	0	1	5	2	15	4	41	0.6	5	0.5	49	3	10

^{*}Por antibiograma solo existe categoría S

Cuadro PAR 17. Staphylococcus spp. coagulasa negativa

NIO	PEN	O	ΚA	FOX	VAN*	E	RI	С	LI	TI	EC	TO	CY	CI	-IL	С	IP	SZ	ΧT	Gl	ΞN	R	ΙF
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1.777	98	0	88	87	100	3	67	4	41	0	0	1	12	1	39	3	57	4	39	6	56	3	32

^{*}Por antibiograma solo existe categoría S

Cuadro PAR 18. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Egnacia	Nº	AN	ſΡ*	VA	ΛN	TI	EC	GI	EH
Especie	IN	I	R	I	R	I	R	I	R
E. faecalis	36	0	14	9	3	0	4	0	21
E. faecium	62	0	96	0	91	11	78	2	86
Enterococcus spp.	435	0	42	3	26	2	26	0.5	48

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar.

Cuadro PAR 19. Acinetobacter baumannii

Nº	SA	M	TZ	ZΡ	CA	١Z	FI	ΞP	IP	M	MI	EΜ	Gl	EN	C	IΡ	SZ	KΤ	AN	ИΚ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
109	14	56	12	63	6	80	6	77	0	40	1	57	2	59	0	69	0	76	9	55

Cuadro PAR 20. Pseudomonas aeruginosa

Nio	P	IP	T	ZP	C	FP	C	٩Z	IP	M	MI	EM	GI	EN	AN	ИΚ	FI	ΞP	С	IΡ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
743	0	46	0	39	11	42	13	22	2	34	4	35	4	41	4	36	18	25	3	43

PERÚ

SISTEMA DE VIGILANCIA

El laboratorio coordinador de la red es el Instituto Nacional de Salud. Este realiza la evaluación del desempeño de las 40 instituciones participantes.

	Províncias	Centros hospitalarios
		Hospital Sergio Bernales
		Instituto Salud del Niño
		Hospital Hipólito Unanue
		Hospital Maria Auxiliadora
		Hospital San Bartolomé
		Hospital Arzobispo Loayza
		Hospital Daniel A. Carrión - Callao
	Lima	Instituto de Enfermedades Neoplásicas
	Ministerio de Salud	Hospital de Emergencias Pediátricas
1		Hospital Dos de Mayo
'		Hospital Cayetano Heredia
		Instituto Materno Perinatal
		Laboratorio de Referencia Regional de Lima Ciudad
		Laboratorio de Referencia Regional de Lima Norte
		Laboratorio de Referencia Regional de Lima Sur
		Laboratorio de Referencia Regional de Lima Este
		Hospital Edgardo Rebagliati Martins –EsSalud
	Lima	Hospital de la Fuerza Aérea del Perú
	Essalud, Fuerzas Policiales, Privado	Hospital Guillermo Almenara – EsSalud
		Clínica San Borja
		Hospital Las Mercedes de Chiclayo
2	Lambayeque	Hospital Belén de Lambayeque
		Laboratorio de Referencia Regional de Lambayeque
3	Tacna	Hospital Regional "Hipólito Unanue" deTacna
J	lacia	Laboratorio de Referencia Regional de Tacna
		Hospital Regional de Iquitos
4	Loreto	Hospital de Apoyo de Iquitos
4	Loreio	Laboratorio de Referencia Regional de Loreto
		Hospital de Apoyo de Yurimaguas
5	San Martin	Hospital de Moyabamba
6	Arequipa	Hospital Regional de Arequipa
	Alequipa	Hospital Goyeneche de Arequipa
		Laboratorio de Referencia Regional de Junín
7	Junin	Hospital "Daniel A. Carrión" de Huancayo
		Hospital Domingo Olavegoya de Jauja
8	Cajamarca	Hospital Regional de Cajamarca
9	Madre de Dios	Hospital de Referencia Regional de Madre de Dios
10	La Libertad	Laboratorio Referencial Regional de la DIRESA La Libertad
		Hospital Regional Docente de Trujillo (LA LIBERTAD)
11	Cusco	Hospital Regional de Cusco

Figura PER 1. Laboratorios participantes en la red de vigilancia de la resistencia

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro PER 1. Especies enviadas para la evaluación del desempeño

Salmonella enteritidis
Shigella sonnei
Aeromonas hydrophila
Salmonella Typhi
Enterococcus faecalis
Acinetobacter baumannii
Enterococcus faecalis
Haemophilus influenzae serotipo b

Cuadro PER 2. Resultados de la evaluación del desempeño

T I I I I I	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº = 206)		
Género y especie correctos	123	59.7
Género correcto	43	20.9
Género correcto y especie incorrecta	14	6.8
Género incorrecto	19	9.2
sin respuesta	7	3.4
Tamaño del halo del antibiograma (Nº =805)		
Dentro del rango de referencia	561	69.7
Fuera del rango de referencia	244	30.3
Interpretación del resultado del antibiograma *		
Sensible	520	92.2
Resistente	236	89.4
Intermedio	4	80
Errores ($N^{\circ} = 72$)		
Menor	17	2.1
Grave	31	3.9
Muy Grave	24	3.0

^{*} De las 803 pruebas realizadas, 564 deberían haber sido informadas como S, 264 como R y 5 como I.

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro PER 3. Salmonella por serotipos

Constino	Nº	С	IP	N/	AL.	Al	MP	C	ГХ	C	١Z	Cl	HL	SZ	ΧT	N	IT	T	ET
Serotipo	IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R
Enteritidis	75	0	0	0	12	0	1	0	0	0	0	0	0	0	1	15	37	0	0
Typhimurium	13	0	0	0	1/13	0	1/13	0	0	0	2/13	0	1/13	0	0	0	0	0	3/13
Typhi	11	0	0	0	2/11	0	1/11	0	0	0	0	0	1/11	0	0	0	1/11	0	0
Braenderup	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corvallis	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oranienburg	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Newport	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Paratyphi B	3	0	0	0	0	0	2/3	0	0	0	0	0	0	0	0	0	0	0	1/3
Paratyphi A	1	0	1/1	0	1/1	0	0	0	0	0	0	0	0	0	0	0	0	0	1/1
Hadar	1	0	1/1	0	1/1	0	0	0	0	0	0	0	0	0	0	0	0	0	1/1
Infantis	1	0	1/1	0	1/1	0	0	0	0	0	0	0	0	0	1/1	0	1/1	0	1/1
Montevideo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Othmarschen	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Choleraesuis	1	0	1/1	0	1/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Essen	1	0	0/1	0	0	0	0	0	0	0	0	0	0	0	0	0	1/1	0	0

^{*} Solo en caso de que sean BLEE-

Cuadro PER 4. Shigella por especies

Especie	Nº	С	IΡ	N/	AL	Al	ИP	C	ГΧ	CA	٩Z	CI	HL	SX	ΚΤ	N	IT	TI	ΞT
Especie	IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R
S. flexneri	249	0	0	0.4	0	0.8	85	0	0.8	0	0	5	76	0.4	79	0	0.8	0.4	88
S. sonnei	159	0	0	0	0.6	0	99	0	0	0	0.6	0	93	0	92	0	0	0.6	99
S. boydii	40	0	0	0	5	0	58	0	0	0	0	2	8	0	72	0	0	0	72
S. dysenteriae	7	0	0	0	0	0	1/7	0	0	0	0	0	1/7	0	6/7	0	0	0	2/7

^{*} Solo en caso de que sean BLEE-

Cuadro PER 5. Escherichia coli (infección urinaria baja no complicada)

Sexo	Edad	Nº	Al	MP	AN	ΛС	Cl	EΡ	СУ	M	GI	EΝ	AN	ЛK	С	ΙP	SZ	ΚT	N.	ΙΤ
Sexo	(años)	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	≤14	375	3	88	8	73	12	60	1	46	2	34	5	6	1	83	0	80	3	14
	≥14	3/3	18	83	17	72	18	34	8	3	17	75	3	17	28	38	33	32	34	45
M	15 a 60	139	4	81	7	59	11	54	4	35	1	31	6	5	1	72	0	80	4	8
IVI	15 a 60	139	7	8	7	4	7	9	2	6	7	3	1	11	10)1	1	12	11	16
	> (0	236	2	94	9	83	13	65	0	51	2	35	4	7	1	89	1	81	3	17
	> 60	230	10	05	9	8	10)5	5	7	10)2	20)6	18	87	22	20	22	29
	~1.4	326	2	80	22	44	17	49	3	21	2	22	1	2	5	21	2	69	2	5
	≤14	320	19	93	20	00	27	75	6	3	18	35	26	63	19	90	20	64	30)1
F	15 a 60	1212	3	80	17	48	17	44	1	20	2	27	3	1	4	51	1	69	4	6
Г	13 a 60	1313	73	37	73	38	77	74	2	76	72	29	10	16	83	39	10	62	11	86
	> 60	620	2	89	13	66	16	46	1	25	1	30	3	3	2	69	1	75	2	7
	>60	628	4	16	4()2	42	20	19	98	39	94	50)1	40	07	50	66	60)6

Cuadro PER 6. Neisseria meningitidis (solo por CIM)

N TO	PE	EN	CTX	CI	-IL	C	IP	R	IF
IN	I	R	S*	I	R	I	R	I	R
1	1/1	0	1/1	0	0	0	0	0	

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro PER 7. Streptococcus pneumoniae (aislamientos invasivos)

	Edad	Nº	OXA	PE	N1	CF	RO	E	RI	SZ	ΚT	CI	IL.	TO		V/	ΑN
	(años)	IN .	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R
Ì	< 6	32	59	3.1	19	6.2	3.1	0	22	9.4	75.0	0	13	0	25.0	0	0
ĺ	≥6	6	2/6	0	0	0	0	0	0	0	3/6	0	0	0	0	0	0

^{*} Resistente <19 mm

Cuadro PER 8. Haemophilus influenzae (aislamientos invasivos)

Edad	N10	Al	MР	CRO	SZ	XT	Cl	HL	R	IF
(años)	IN	I	R	S*	I	R	I	R	I	R
< 6	1	0	0	1/1	1/1	0	0	0	0	0

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de origen hospitalario

Cuadro PER 10. Escherichia coli

Nº	Α	MP	AN	ИС	Cl	EΡ	TZ	ZΡ	C	ГΧ	CA	١Z	Fl	EΡ	IP	M	MI	ΞM	N.	AL	CI	ΙL	С	IΡ	S	KΤ	N	ΙΤ	TO	CY
IN-	I	R	I	R	I	R	Ι	R	I*	R	I*	R	I	R	I	R	I	R	Ι	R	I	R	Ι	R	Ι	R	I	R	I	R
1347	2	85	7	69	13	56	14	2	3	37	0.9	39	0	38	0	0	0	0	2	73	7	33	2	60	1	74	3	5	1/10	6/10
1347	8	38	80	58	89	98	4	3	10	84	10	01	90)5	41	71	96	59	79	91	12	20	10	93	10	55	10	02	1	0

^{*} Solo en caso de que sean BLEE-

Cuadro PER 12. Klebsiella pneumoniae

Γ	Nº	Αl	ИС	Cl	EΡ	TZ	ZΡ		ГХ	CA	١Z	FI	ΞP]	PM	N	1EM	N.	AL	CI	ΉL	С	ΙP	SZ		N	IT		ГСY
	IN	Ι	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R	Ι	R	Ι	R
Г	595	5	85	3	78	26	19	2	70	0.4	73	0	71	0	1/288	0	1/488	6	66	2	61	9	47	4	72	5	40	0	19/23
1	393	4.	38	3′	76	4	2	49	90	49	95	40	50		288		488	22	27	21	16	5	10	42	23	20)2		23

^{*} Solo en caso de que sean BLEE-

Cuadro PER 13. Enterobacter spp.

Nº	T	ZP	C	ГХ	CA	٩Z	FI	ΞP	IP	M	ME	EM	N/	AL	CI	IL.	C	IP	SX	ΥT	N	IT	TC	ΣY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R
173	0/4	1/4	9	57	3	51	7	38	0/22	0/22	0	0	2	75	7	52	6	45	6	68	16	33	1/6	3/6
1/3	4	4	13	39	14	16	11	13	2		15	54	4	4	4	2	15	57	7	9	4	3	6	5

Cuadro PER 14. Staphylococcus aureus

N	10	PEN	O	ΚA	FOX	VAN*	El	RI	C	LI	TE	EC	DO	ΟX	TO		CI	-IL	С	IΡ	SZ	KΤ	GI	EN	R	IF
18	'	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
62	1	99	1	70	75	100	4	76	1	73	0	0	1	7	0	15	0.6	32	3	71	0.7	31	1	71	0.4	20
02	1	32	4()7	509	108	60)7	60)8	24	46	24	17	25	56	33	34	5'	78	29	92	57	70	49	90

^{*}Por antibiograma solo existe categoría S

Cuadro PER 15. Staphylococcus spp. coagulasa negative

Nº	PEN	O	ζA	FOX	VAN*	El	RI	C	LI	TI	EC	DO	ЭΧ	TO	ĽΥ	CI	IL	C	IP	SZ	ΧT	Gl	ΞN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1220	94	0	77	55	100	6	79	4	59	0	0	4	7	3	17	1	46	13	43	3	75	8	53	2	38
1338	825	90)8	701	1261	12	93	13	01	2:	53	18	38	52	29	6	10	10	74	41	78	10	54	48	37

^{*}Por antibiograma solo existe categoría S

Cuadro PER 16. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Especie	Nº	AN	/IP*	V	AN	TI	EC	Gl	EH	S'	ГН
Especie	IN	I	R	I	R	I	R	I	R	I	R
E faccalia	80	0	0	0	3	0	2	2	43	0	46
E. faecalis	80	6	7	7	'8	5	1	5	54	5	4
E. C i	17	0	15/15	0	15/17	0	14/15	0	11/16	0	14/15
E. faecium	1 /	1	5	1	7	1	5	1	6	1	5
F	247	0	54	2	60	0	12	4	36	1	36
Interococcus spp.	247	6	8	2	17	6	8	10	03	8	4

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro PER 17. Acinetobacter baumannii

No	SA	М	TZ	ZP	C	ΑZ	FI	ΞP	IP	M	M	ΞM	DO	XC	GI	EN	(CIP	S	ζT	AN	ИK	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
26	1/22	0	1/22	0	6/26	12/26	4/18	6/18	0	0	0	1/26	1/6	1/6	0	4/8	0	13/26	0	5/8	1/24	9/24	0	2/3

Cuadro PER 18. Pseudomonas aeruginosa

No	P	IP	T	ZP	CA	٩Z	IP	M	MI	EM	AZ	ZT	GI	ΞN	AN	ЛK	Fl	ΞP	С	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
594	0	82	0	68	2	65	0.9	68	1	63	10	65	1	70	3	59	4	66	3	70
394	4	5	8	4	51	78	22		57	70	57	74	29	95	5′	70	43	32	5:	50

REPUBLICA DOMINICANA

SISTEMA DE VIGILANCIA

La Red esta constituida por 14 laboratorios siendo el Laboratorio Nacional de Salud Pública Dr. Defilló (LNSPDD) el coordinador:

Laboratorio Nacional de Salud Pública Dr. Defilló (LNSPDD)
Laboratorio de Microbiología del Hospital Dr. Robert Reid Cabral
Laboratorio del Hospital Luis E. Aybar (Centro de Gastroenterología)
Laboratorio Clínico del Hospital General de la Plaza de la Salud.
Laboratorio Clínico de la Maternidad Nuestra Señora de la Altagracia
Bacteriocentro
Laboratorio Amadita P. de González
Laboratorio de Referencia.
Laboratorio del Hospital Dr. José Maria Cabral y Báez
Laboratorio del Hospital Infantil Dr. Arturo Grullon
Laboratorio Clínico de Referencia y Especialidades García García
Laboratorio del Hospital Ricardo Limardo
Laboratorio del Hospital Jaime Mota
Laboratorio del Hospital San Vicente de Paúl

Figura DOR 1. Red de laboratorios de República Dominicana, 2007

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

Cuadro DOR 1. Especies enviadas para la evaluación del desempeño de 2008

Anual
Enterococcus faecalis
Escherichia coli
Streptococcus pneumoniae
Haemophilus influenzae
Streptococcus pneomoniae

Cuadro DOR 2. Resultados de la evaluación del desempeño

Tino do mucho ve regultodo	Conco	rdancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (N° =30)		
Género y especie correctos	27	90
Género correcto	1	3
Género correcto y especie incorrecta	2	7
Género incorrecto	0	0
Tamaño del halo del antibiograma (Nº =100)		
Dentro del rango de referencia	69	78
Fuera del rango de referencia	12	12
Interpretación del resultado del antibiograma (Nº =114)*		
Sensible	100	88
Resistente	14	12
Intermedio		
Errores ($N^0 = x$)		
Menor	1	0.9
Grave	8	7.0
Muy Grave	1	0.9

^{*} De las 114 pruebas realizadas, 91 deberían haber sido informadas como S, 13 como R y 0 como I

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro DOR 3. Salmonella spp.

NIo	C	IP	Al	MР	AN	ΛС	C	ГХ	CA	٩Z	FC	OS	C	Н	SΣ	ΚT
IN.	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
26	1	3	0	2	0	1	0	0	0	0	0	2	0	1	1	3

^{*} Solo en caso de que sean BLEE-

Cuadro DOR 4. Shigella spp.

ſ	No		IΡ		MР		ИС	('	ГΧ	(:/	٩Z	FC	OS	CI	IL.	SΣ	ΚT
	IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
	20	0	2	1	16	0	3	0	0	0	0	0	1	1	2	1	12

^{*} Solo en caso de que sean BLEE-

Cuadro DOR 5. Neisseria meningitidis (solo por CIM)

Nº	Al	MР	PE	EN	CTX/CRO	CI	IL	C	IP	R		Ol	FL	SX	
IN	I	R	I	R	S*	I	R	I	R	I	R	I	R	I	R
5	0	0	1/5	0	5	0	0	0	0	0	0	0	0	0	0

^{*}Solo existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro DOR 6. Staphylococcus aureus

No	PEN	O	ΧA	FOX	VAN	E	RI	C	LI	CI	I L	C	IP	SΣ		GI	
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R
1210	90	10	30	25	100	-	29	0	7	0	2	3	9	0	12	6	12

Cuadro DOR 7. Staphylococcus coagulasa negativa

Nº	PEN	O	ΧA	FOX	VAN	E	RI	C	LI	CI	IL	С	IΡ	SΣ	KΤ	GI	EN
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R
110	65	0	42	39	100	0	70	0	48	0	15	5	29	20	28	1	42

¹ sólo por CIM

Cuadro DOR 8. Neisseria gonorrhoeae

N TO	PE	EN	ß-lacta	amasa¹	CTX/CRO
IN	I	R	POS	NEG	S*
3	0	1/3	1/3	0	3

¹ Por Nitrocefin; *Solo existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro DOR 9. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N^1	CX	M^1		X^1	E	RI	SX	ΚT	CI	HL .
Edad	IN IN	R*	I	R	I	R	I	R	I	R	I	R	I	R
< 6 años	56	0	1	17	0	0	8	1	1	12	2	34	0	3
≥ 6 años	22	0	1	0	0	0	0	0	0	6	0	8	0	2

^{*}Resistente ≤19 mm; ¹Solo por CIM

Cuadro DOR 10. Haemophilus influenzae (aislamientos invasivos)

F4-4	N ₀	Al	МР	SA	M	CI	HL
Edad	IN	I	R	I	R	I	R
< 6 años	6	0	0	0	0	0	0
≥ 6 años	1	0	0	0	0	0	0

Cuadro DOR 11. Streptococcus \u00e3-hemolítico

N 10	PEN	C	LI	El	RI
IN	S*	I	R	I	R
180	100	0	3	0	4

^{*}Solo existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de origen hospitalario

Cuadro DOR 12. Escherichia coli

Vio	Al	MΡ	AN	ΛС	Cl	EΡ	C	ГΧ	CA	١Z	FI	ΞP	IP	M	MI	EM	N/	٩L	С	IP	SΣ	ΚT	N	IT
IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2812	15	89	15	51	5	30	3	33	3	33	2	30	0	0	0	0	10	58	3	49	5	65	2	15

^{*} Solo en caso de que sean BLEE-

Cuadro DOR 13. Klebsiella pneumoniae

No	A	MP	ΑN	ИС	C7	ГΧ	CA	٩Z	FI	ΞP	IP	M	MI	EM	N/	٩L	C	ΙP	SΣ	ζT	N	ΙΤ
IN	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2021	0	100	3	75	1	40	2	40	1	18	0	0	0	0	12	60	6	58	0	58	1	27

^{*} Solo en caso de que sean BLEE-

Cuadro DOR 14. Enterobacter spp.

Nº	Al	MР	AN	ИС	C	ГΧ	CA	١Z	FI	ΞP	IP	M	Ml	EN	C	ΙP	SΣ	KΤ	N	ΙΤ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
342	0	92	3	91	2	44	1	44	-	10	0	0	0	0	0	39	20	54	-	48

Cuadro DOR 15. Staphylococcus aureus

Nº	PEN	O	ΚA	FOX	VAN*	E	RI	C	LI	CI	I L	С	ΙP	SΣ	ΚΤ	GI	EN
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R
1210	90	10	25	25	100	0	29	0	7	0	2	3	9	0	12	6	12

^{*} Por antibiograma solo existe categoría S

Cuadro DOR 16. Staphylococcus coagulasa negativa

No	PEN	O	ΧA	FOX	VAN*	E	RI	C	LI	CI	IL.	С	IΡ	SΣ	ΚT	Gl	EN
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R
100	65	0	42	39	100	0	70	0	48	0	15	5	29	20	28	1	42

^{*} Por antibiograma solo existe categoría S

Cuadro DOR 17. Enterococcus faecalis, Enterococcus faecium

Eamania	NIO	AN	1P*	VA	AN
Especie	IN IN	I	R	I	R
E. faecalis	129	0	1	0	0
E. faecium	63	2	25	0	25

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro DOR 18. Acinetobacter baumannii

Nº	SA	M	TZ	ZP	CA	٩Z	FF	EΡ	IP	M	MI	EM	GI	EN	C	IP	SΣ	KΤ	AN	ЛΚ
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
85	1	70	22	10	3	56	0	54	0	23	0	22	3	84	8	85	0	82	6	78

Cuadro DOR 19. Pseudomonas aeruginosa

Nº	P	IΡ	TZ	ZP	CA	٩Z	IP	M	MI	EM	GI	EN	AN	ИK	FI	ΞP	С	IP
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
503	0	30	2	26	0	12	0	8	0	8	0	12	0	7	0	6	0	20

URUGUAY

SISTEMA DE VIGILANCIA

La Red Nacional de Vigilancia está compuesta por el laboratorio coordinador, el Departamento de Laboratorios de Salud y 17 laboratorios de instituciones públicas y privadas de todo el país:

	H. de Artigas: Cecilia Gómez	
	H. de Rivera: Alejandro Berton	
	H. Regional de Salto: Enrique Savio	
	H. Escuela del Litoral: Fernando Rodríguez y Coral Fernández	
	COMEPA, Paysandú: Ricardo Diez	
'n	H. de Tacuarembó: Beatriz Gadola y Ana Bermúdez	
nterior	H. de Treinta y Tres: Luis Jorge	
드	H. de Durazno: Alejandro Rocca	
	H. de Florida: M del Carmen Viegas	
	H. de Mercedes: Vivian Peirano	k
	H. de Colonia: Margarita Mazza	
	H. de Maldonado: Nora Milanese	
	COMERO, Rocha: Rosina Servetto	
0	H. Pereira Rossell: María Albini	
Montevideo	H. Pasteur: Verónica Seija	
onte	H. Maciel: Walter Pedreira y Antonio Galiana	
Σ	H Clínicas: Cristina Bazet	

Figura URU 1. Laboratorios participantes en la red de vigilancia de la resistencia, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

La evaluación externa del desempeño se realiza mediante el envío, dos veces por año, de tres cepas desconocidas. En el primer y segundo semestre participaron respectivamente 15 y 13 de los 17 laboratorios de la Red. En 3 oportunidades, los resultados se enviaron fuera del plazo establecido (30 días).

Cuadro URU 1. Especies enviadas para la evaluación de desempeño, 2008

1er. semestre	2do. semestre
Proteus mirabilis	Moraxella catarhalis
Stenotrophomonas maltophilia	Escherichia coli
Streptococcus dysagalactiae, spp. equisimilis o grupo G	Pseudomonas aeruginosa

Cuadro URU 2. Resultados de la evaluación del desempeño

T 1 1 1 1 1	Conco	ordancia
Tipo de prueba y resultado	N°	Porcentaje
Diagnóstico microbiológico (Nº =75)	·	
Género y especie correctos	65	87
Género correcto	7	9
Género correcto y especie incorrecta	2	3
Género incorrecto	1	1
Tamaño del halo del antibiograma (Nº =264)	·	
Dentro del rango de referencia	212	80
Fuera del rango de referencia	52	20
Interpretación del resultado del antibiograma*	·	
Sensible	175	97
Resistente	97	94
Betalactamasa	5	71
Errores (N° =291*)	·	
Menor		
Grave	3	1
Muy Grave	2	1

 $[\]ast$ De las 291 pruebas realizadas, 181 deberían haber sido informadas como S, 103 como R por disco-difusión/CIM y 7 como R por producción de beta-lactamasa

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro URU 3. Salmonella spp. por serotipos

Caratina	Nº	C	IP	N/	AL	Al	MР	C	ГΧ	CI	IL	SZ	ΚΤ	TI	ΞT
Serotipo	IN	I	R	I	R	I	R	I*	R	I	R	I	R	I	R
Typhimurium	10	0	0	0	1/10	0	0	0	0	0	1/10	0	1/10	1/10	4/10
Enteritidis	3	0	0	0	1/3	0	0	0	0	0	0	0	1/3	0	1/3
Panama	2	0	0	0	0	0	0	0	0	0	0	0	0	1/2	0
Anatum	2	0	0	0	0	0	0	0	0	0	0	0	0	1/2	0
Typhi	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Montevideo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salmonella spp.	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*}Solo en caso de que sean BLEE-

Cuadro URU 4. Shigella por especies

Egnagia	No		IΡ	N/	٩L	Al	MР	C7	ГΧ	CI	HL	SΣ	ΥT	TI	ΞT
Especie	11	I	R	I	R	I	R	I*	R	I	R	I	R	I	R
S. flexneri	3	0	0	0	0	0	2/3	0	0	0	2/3	0	0	0	2/3

^{*}Solo en caso de que sean BLEE-

Cuadro URU 5. Escherichia coli (infección urinaria baja no complicada)

N	,	Al	MР	SA	M	Cl	EΡ	N/	AL.	GI	EN	C	IP	SZ	KΤ	N	IT
IN.		I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
713	8	11	54	8	21	25	18	0.5	27	0	4	0.3	18	1	28	4	5

Cuadro URU 6. Neisseria meningitidis (solo por CIM)

No	PF	-i NI	CTX/CRO	CI	I L	C	IP	R	IIF I
11	I	I R	S	I	R	I	R	I	R
32	75	0	100	0	0	0	0	0	0

Cuadro URU 7. Staphylococcus aureus

Vio	O	ΚA	FOX		RI	C	LI	C	IP	SZ	ΚΤ	GI	EN
IN	I	R	R	I	R	I	R	I	R	I	R	I	R
263	0	27	27	0.7	25	0	22	2	2	0	3	0.3	3

Cuadro URU 8. Streptococcus pneumoniae (aislamientos invasivos)

Edad	No	OXA	PE	N1	CT	X1	E	RI	C	LI	SZ		CI	IL	LX	/X	R	IF	TO	CY	VAN
Edad	IN	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	S**
<6 años	71	52	0	4	0	0	0	11	0	8	0	48	0	1	0	0	0	0	0	8	100
≥6 años	122	13	0	0	0	0	0	8	0	2	0	16	0	0	0	0	0	0	0	7	100

^{*} Resistente ≤19 mm; ¹Solo por CIM

Cuadro URU 9. Haemophilus influenzae (aislamientos invasivos)

Edad	Nº	Al	MР	SA	M	CF	RO	TO		AZM	CIP	SZ	KΤ	CI	I L	RIF
Edad	IN	I	R	I	R	I	R	I	R	S*	S*	Ι	R	I	R	S*
<6 años	7	0	1/7	0	0	0	0	1/7	0	100	100	0	2/7	0	0	100
≥6 años	1	0	0	0	0	0	0	0	0	100	100	0	0	0	0	100

Cuadro URU 10. Streptococcus pyogenes

Vio	PEN	C	LI	E	RI
IN	S*	I	R	I	R
130	100	0	8	0.7	8

Cuadro URU 11. Streptococcus agalactiae

V10	PEN	C	LI	E	RI
IN	S*	I	R	I	R
59	100	0	13	2	14

Microorganismos de origen hospitalario

Cuadro URU 12. Escherichia coli

No	Al	мP	CX	M	TZ	ZΡ	C7	X	CA	٩Z	IP	M	GI	EN	C	IP	SZ	ΚT	N.	IT	AN	ЛK
IN	I	R	Ι	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	Ι	R
195	13	71	15	10	1	8	3	4	1	4	0	0	0	12	0.6	31	1	46	6	12	0	3

Cuadro URU 13. Klebsiella pneumoniae

Nº	Gl	EN	AN	ИΚ	CΣ	ΚM	TZ	ZP	C	ГΧ	C	٩Z	SA	М	IP	M	C	IΡ	SZ	ΚT
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
124	0	37	13	10	4	57	3	39	0	51	0	51	3	72	0	0	0	46	0	54

Cuadro URU 14. Enterobacter spp.

ſ	Nº	GI	EN	AN	ЛK	TZ	ZP	C'	ГХ	CA	λZ	IP	M	С		SZ	
	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	26	1/26	16/26	0	10/26	2/26	18/26	2/26	21/26	1/26	20/26	0	0	0	17/26	0	19/26

Cuadro URU 15. Staphylococcus aureus

Nº	ΟΣ	ΚA	FOX	VAN	E	RI	C	LI	TO	CY	CI	HL	С	IP	SZ	ΥT	GI	EN	R	IF
IN	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
172	0.6	29	30	100	0	21	0	20	0	0	0	0	0	19	0	6	0	20	0	0

Cuadro URU 16. Staphylococcus coagulasa negativa

Nº	O	ΧA	FOX	VAN*	E	RI	C	LI	TO	CY	CI	HL	С	IP	SZ	ΚT	GI	EN	R	IF
IN	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
76	0	54	54	100	0	68	0	60	0	10	0	29	0	56	2	25	0	55	3	16

^{*}Por antibiograma solo existe categoría S

Cuadro URU 17. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp. (no identificados)

Egnacia	Nº	Al	MР	VA	Ν	TI	EC	GI	EH
Especie	IN	I	R	I	R	I	R	I	R
E. faecalis	23	0	0	0	0	0	0	0	9/23
E. faecium	10	0	4/10	0	1/10	0	0	1/10	3/10
Enterococcus spp.	31	0	1/31	0	0	0	0	2/31	7/31

Cuadro 18. Acinetobacter baumannii

Vlo	SA	M	TZ	ZΡ	CA	٩Z	IP	M	MI	EΜ	GI	EN		ЛK	C	
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
47	0	87	4	74	2	85	6	30	3	64	0	94	0	91	0	94

Cuadro URU 19. Pseudomonas aeruginosa

Vio		ZP	('/	٩Z	IP	M	MI	EM	GI	EN		ЛΚ		IP
IN IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R
78	0	38	0	44	0	35	2	43	3	43	1	16	0	38

VENEZUELA

SISTEMA DE VIGILANCIA

El Instituto Nacional de Higiene "Rafael Rangel" es el Centro de Referencia Nacional para la vigilancia de la resistencia a los antibióticos, donde se mantiene la vigilancia de *Salmonella spp, Shigella spp, Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis*, con el objetivo de investigar los serotipos emergentes, prevalencia y patrones de sensibilidad a un panel de antibióticos ya preestablecido, con la participación de laboratorios de todo el país. En el caso de las cepas de Salmonella, además de la participación de laboratorios clínicos, se incluyen aquellas instituciones que aíslan estos microorganismos de medio ambiente, alimentos y animales.

La vigilancia de la resistencia a los antibióticos de agentes patógenos no entéricos es llevada en el Hospital Vargas, lo cual permite emitir informes semestrales utilizando el Programa WHONET. Este informe es de uso interno en los centros hospitalarios y está a la disponibilidad en la página Web de la Sociedad Venezolana de Infectología.

Distrito Federal	Edo. Bolivar	Edo. Lara	Edo. Sucre
Edo. Anzoategui	Edo. Carabobo	Edo. Merida	Edo. Tachira
Edo. Amazonas	Edo. Cojedes	Edo. Miranda	Edo. Trujillo
Edo. Apure	Edo. Delta Amacuro	Edo. Monagas	Edo. Yaracuy
Edo. Aragua	Edo. Falcon	Edo. Nueva Esparta	Edo. Vargas
Edo. Barinas	Edo. Guarico	Edo. Portuguesa	Edo. Zulia

Figura VEN 1. Laboratorios participantes en la red de vigilancia de la resistencia, 2008

GARANTÍA DE CALIDAD

Evaluación externa del desempeño

El Instituto Nacional de Higiene "Rafael Rangel" coordina la evaluación del desempeño, y participan en este programa 38 laboratorios, de los cuales 28 son hospitales públicos y 10 pertenecen a centros de salud privados. Se evalúa el desempeño de los laboratorios en cuanto a la identificación, pruebas de susceptibilidad y detección fenotípica de ciertos mecanismos de resistencia a los antibióticos con importancia clínica. La evaluación consiste en el envío de un panel constituido de 5 cepas desconocidas, una vez al año y se les da un período de 60 días para responder la encuesta, en la cual deben indicar las pruebas bioquímicas realizadas, los halos de inhibición del antibiograma y la interpretación de susceptibilidad. Cada participante recibe un informe global del grupo con respecto al laboratorio de referencia. Las especies enviadas para la evaluación del desempeño se listan en el Cuadro VEN 1.

Cuadro VEN 1. Especies enviadas para la evaluación del desempeño, 2008

Enterococcus raffinosus
Enterococus faecium (VanA)
Pseudomonas aeruginosa ATCC 27853
Pseudomonas aeruginosa (pérdida de OprD e hiperproducción de MexAB-OprM)
Enterobacter cloacae (CTXM-2, hiperproducción de AmpC e impermeabilidad)

Cuadro VEN 2. Resultados de la evaluación del desempeño

Tino do musho y regultodo	Conco	rdancia
Tipo de prueba y resultado	Nº	Porcentaje
Diagnóstico microbiológico (Nº = 65)		
Género y especie correctos	40	61.54
Género correcto	2	3.08
Género correcto y especie incorrecta	18	27.69
Género incorrecto	5	7.69
Tamaño del halo del antibiograma (Nº =224)		
Dentro del rango de referencia	144	64.29
Fuera del rango de referencia	80	35.71
Interpretación del resultado del antibiograma * (Nº = 306)		
Sensible	162	89.5
Resistente	109	89.34
Intermedio	1	33.33
Errores (N° =304)		
Menor	5	1
Grave	14	5
Muy Grave	13	4

^{*} De las 306 pruebas realizadas, 181 deberían haber sido informadas como S, 122 como R y 3 como I

RESULTADO DE LA VIGILANCIA

Microorganismos de origen comunitario

Cuadro VEN 3. Salmonella por serotipos

Caratina	Nº	С	IP	N	4L	Al	MΡ	AN	ΛС	C	ГΧ	CA	٩Z	CI	HL	SZ	ΥT	Tl	ET
Serotipo	IN	I	R	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	I	R
Dublín	7	0	0	0	3/7	0	0	0	0	0	0	0	0	0	0	0	0	0	2/7
Typhimurium	5	0	0	0	0	0	4/5	1/5	0	0	0	0	0	0	2/5	0	0	0	2/5
Saintpaul	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Typhi	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mbandaka	1	0	0	0	0	0	1/1	0	0	0	1/1	0	1/1	0	0	0	0	0	0
Braenderup	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heidelberg	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enteritidis	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Infantis	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Panama	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Havana	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salmonella spp.	239	0	0	0	0	1	30	10	8	0	3	0	1	6	12	0	16	0	40

^{*}Solo en caso de que sean BLEE-

Cuadro VEN 4. Shigella por especies

Egnacia	Nº	С	IΡ	AN	ЛP	AN	ИС	C	ГΧ	CA	١Z	CI	I L	SZ	ΚT	N	IT	TI	ET
Especie	IN	I	R	I	R	I	R	I*	R	I*	R	I	R	I	R	Ι	R	I	R
S. flexneri	74	0	0	6	78	23	12	0	0	0	0	0	80	0	75	0	0	0	11
Shigella spp.	127	0	17	17	83	33	33	0	0	0	0	NT	NT	NT	NT	NT	NT	NT	NT

^{*}Solo en caso de que sean BLEE-

Cuadro VEN 5. Escherichia coli (infección urinaria baja no complicada)

Corro	Edad	Nº	Al	ИP	AN	ΛС	Cl	EΡ	СХ	M	GI	EN	AN	ЛK	C	ΙP	SΣ	ΥT	N.	IT
Sexo	Edad	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
	≤14	101	4	84	26	12	9	58	0	14	0	11	1	3	2	11	1	55	6	5
M	15 a 60	907	1	79	23	14	16	57	4	18	1	17	3	2	1	49	0.5	63	7	8
	>60	771	1	80	24	13	18	63	10	29	0.4	19	4	2	0.9	58	0.5	68	10	9
	≤14	271	6	71	18	12	18	49	7	10	0.5	8	1	2	0.8	14	0.4	60	4	3
F	15 a 60	4792	1	70	18	10	22	41	4	9	0.6	12	2	1	0.6	35	0.4	57	5	4
	> 60	1649	0.4	70	20	11	9	65	5	22	0.4	13	4	1	0.5	45	0.4	60	8	6

Cuadro VEN 6. Neisseria meningitidis (solo por CIM)

N°	Antibióticos
26	No fueron evaluados

Cuadro VEN 7. Staphylococcus aureus

NIO	PEN	O	ΚA	FOX	VAN*	E	RI	C	LI	VA	N^1	TO	CY	CF	I L	C	ΙP	S	ζT	Gl	ΞN	R	IF
IN.	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
2253	96	0.1	34	31	100	8	45	53	30	0	0	2	14	1	3	4	25	0.6	26	1	25	2	4

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro VEN 8. Staphylococcus spp. coagulasa negativa

Nio	PEN	02	ΚA	FOX	VAN*	E	RI	С	LI	VA	N^1	TO		CI	HL	С	IΡ	SZ	ζT	GI	ΞN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
670	95	0.8	53	26*	100	5	72	8	47	0	0	0.7	20	3	0.6	7	46	1	63	9	31	6	11

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro VEN 9. Neisseria gonorrhoeae

N10	PE	EN	CTX	C	IP	TC	CY
IN IN	I	R	S*	I	R	I	R
15	3/15	10/15	15/15	0	7/15	0	15/15

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional.

Cuadro VEN 10. Streptococcus pneumoniae (aislamientos invasivos)

Edad	Nº	OXA	PE	N1	СТ	X^1	E	RI	C	LI	SZ	KΤ	CI	-IL	R	IF	TO	CY	VAN
Luau	11	R*	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	S
< 6 años	37	19	4	14	2	0	2	28	NT	NT	11	44	0	7	NT	NT	NT	NT	100
≥ 6 años	85	9	0	10	0	0	16	49	5	36	17	56	0	13	0	0	3	42	100

^{*} Resistente \le 19 mm; \(^1\)Solo por CIM

Cuadro VEN 11. Haemophilus influenzae (aislamientos invasivos)

Edad	Nº	AN	IP	SA	M	Cl	EC	C.	XM	CTX	AZM	CIP	S	XT	CI	I L
Edad	IN	I	R	I	R	I	R	I	R	S*	S*	S*	I	R	I	R
<6 años	3	0	0	NT	NT	NT	NT	0	3/3	NT	NT	0	0	0	0	0
≥6 años	23	8/23	0	9/23	0	0	14	0	7/23	23/23	20/23	5/23	9/23	20/23	11/23	23/23

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Cuadro VEN 12. Streptococcus B-hemolítico

NIO	PEN	C	LI	El	RI	TC	CY
IN .	S*	I	R	I	R	I	R
56	100	0	0	0	0	0	46.9

^{*}Solamente existe categoría S, en caso de un aislamiento no-Sensible, remitir la cepa a un centro de referencia supranacional

Microorganismos de origen hospitalario

Cuadro VEN 13. Escherichia coli

Nº	A	MP	AN	ΛС	Cl	EΡ	Tž	ZΡ	C	ГΧ	C	٩Z	FI	ΞP	FC	ΟX	IP	M	MI	ΞM	N	AL.	CI	ΙL	C	ΙP	S	ΚT	N	IΤ	TO	ĽΥ
IN	I	R	I	R	Ι	R	I	R	I*	R	I*	R	Ι	R	Ι	R	I	R	I	R	I	R	Ι	R	Ι	R	I	R	I	R	Ι	R
1193	2	74	23	13	19	55	18	5	0	48	2	46	0.2	45	1	4	0	2	0.2	0.7	2	52	0	16	0.7	39	0.1	62	7	3	1	63

^{*} Solo en caso de que sean BLEE-

Cuadro VEN 14. Klebsiella pneumoniae

Nº	Al	MP	AN	ИС	С	EP	T	ZP	Cl	ſΧ	CA	١Z	F	EΡ	FC	ΟX	IP	M	MI	EM	N/	٩L	CI	ΗL	С	IΡ	S	KΤ	N	ΙΤ	TO	ΞY
IN	I	R	I	R	I	R	I	R	I*	R	I*	R	Ι	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
1452	7	91	15	20	6	43	21	14	0.3	46	0.4	45	0	45	5	14	0.2	3	0.1	2	21	24	0	3	5	25	1	32	21	22	3	38

^{*}Solo en caso de que sean BLEE-

Cuadro VEN 15. Enterobacter spp.

N TO	Al	ИP	AN	ΛС	T	ZP	C	ГХ	CA	٩Z	Fl	ΞP	FO)X	ΙP	M	MI	EM	C	ΙP	S	ζT	N	ΙΤ
IN	I	R	I	R	Ι	R	I	R	I	R	I	R	I	R	Ι	R	I	R	I	R	I	R	Ι	R
6	0	6/6	1/6	3/6	0	0	1/6	2/6	0	2/6	0	1/6	0	6/6	0	0	0	0	0	2	0	3/6	6/6	0

Cuadro VEN 16. Staphylococcus aureus

Nº	PEN	O	ΚA	FOX	VAN*	El	RI	C	LI	VA	N1	TI	EC	TO	CY	CI	IL.	C	IΡ	S	XT	GI	ΞN	R	IF
IN	R	I	R	R	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
790	86.8	0.3	37	29.7	100	5.3	44	4.9	30	0	0	0.5	0	7.4	26	1	2	3	26	0.6	15.1	1.9	26	1.1	3.4

^{*}Por antibiograma solo existe categoría S; ¹Solo por CIM

Cuadro VEN 17. Staphylococcus spp. coagulasa negativa

Nº	PEN	02	ΚA	FOX	VAN*	El	RI	C	LI	VA	N1	TI	EC	TO		CI	I L	C	IΡ	S	XT	GE	ΞN	R	IF
IN	R	I	R	R**	S	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
360	96	1.3	71	36,6	100	2.7	81	4	57	0	0	0	0	0	33	3.7	5.6	4.4	55	0	50.3	6.6	42	2.8	5.6

^{*}Por antibiograma solo existe categoría S; **N=162; ¹Solo por CIM

Cuadro VEN 18. Enterococcus faecalis, Enterococcus faecium y *Enterococcus* spp. (no identificados)

Egnacia	Nº	AN	ſΡ*	VA	ΛN	TI	EC	GI	EH	ST	ГН
Especie	IN .	I	R	I	R	I	R	I	R	I	R
E. faecalis	706	0	3	2	1	4	16	0	14	0	25
E. faecium	93	0	56	6	29	0	50	0	4	0	6
Enterococcus spp.	40	0	31	21	3	5	5	NT	NT	NT	NT

^{*} En E. faecalis tanto para I como R, confirmar que sea Basa + para informar

Cuadro VEN 19. Acinetobacter baumannii

Nio	SA	M	TZ	ZP	CA	٩Z	FI	ΞP	IP	Μ	Ml	EM	GI	EN	C	ΙP	S	ΥT	AN	ЛK	TO	CY
IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
466	18	45	14	67	21	47	14	59	4	57	2	58	4	59	6	63	0.3	77	6	62	18	32

Cuadro VEN 20. Pseudomonas aeruginosa

	Vio	P	ΙP	TZ	ZP	Cl	FP	CA	١Z	IP	M	Ml	EΜ	GI	EN	AN	ЛΚ	FI	EΡ	С	IΡ
	IN	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R	I	R
ĺ	1555	0	15	12	15	13	19	7	17	4	17	4	20	6	21	4	19	9	13	5	32

4 RESULTADOS DE LA EVALUACIÓN DE DESEMPEÑO DE LAS INSTITUCIONES COORDINADORAS DE LAS REDES NACIONALES

4.1 INSTITUTO NACIONAL DE ENFERMEDADES INFECCIOSAS (INEI), DR. CARLOS MALBRÁN, MINISTERIO DE SALUD, BUENOS AIRES, ARGENTINA. BACTERIAS ENTÉRICAS Y NO ENTÉRICAS.

El laboratorio organizador es el Instituto Nacional de Enfermedades Infecciosas (INEI), Ministerio de Salud, Argentina. Durante el año 2008 se enviaron 10 cepas desconocidas, una vez al año, a los laboratorios nacionales de referencia de Bolivia, Costa Rica, Chile, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, República Dominicana, Uruguay y Venezuela. En Ecuador, donde el laboratorio coordinador de la red de vigilancia no es el laboratorio nacional de referencia, se enviaron las cepas a dos instituciones: el Instituto Nacional de Higiene Tropical "L. I. Pérez" y el Hospital Vozandes de Quito.

Listado de especies enviadas para evaluación del desempeño, 2008:

Enterococcus casseliflavus, Klebsiella oxytoca, Staphylococcus aureus, Enterococcus faecalis, Elizabethkingia meningoseptica, Proteus mirabilis, Staphylococcus haemolyticus, Pseudomonas stutzeri, Klebsiella pneumoniae, Enterococcus raffinosus.

En la presente encuesta participaron 14 de los 16 miembros integrantes del Programa de Control de Calidad.

En el siguiente cuadro se pueden resumir las conclusiones de la Encuesta 2008 del Programa Latinoamericano Control de Calidad en Bacteriología y Resistencia a los Antimicrobianos.

Conclusión encuesta Nº 15

Los Laboratorios Participantes presentaron una concordancia con el Laboratorio Coordinador de:

- 89 % en Tipificación Bacteriana Ideal
- 88,9 % en la Interpretación de las Pruebas de Sensibilidad
- 82,9 % con los Rangos de Zonas de Inhibición Aceptables

5 CONCLUSIONES Y RECOMENDACIONES DE LA REUNIÓNANUAL DE LA RED DE MONITOREO/ VIGILANCIA DE LA RESISTENCIA A LOS ANTIBIÓTICOS

LIMA, PERÚ

Conclusiones

- La fase preanalítica debe ser reforzada por parte de los laboratorios hospitalarios y es necesario tener normas para el monitoreo de la obtención y transporte de la muestra.
- Se refuerza la necesidad en el envío de aislamientos de resistencia inusual o emergente para su caracterización a un centro de referencia regional, por parte de los países de la red.
- Tomar en cuenta que SIREVA II ha establecido nuevos grupos etáreos de análisis de la información para *S. pneumoniae*, *N. meningitidis* y *H. influenzae*.
- Se establece que el tiempo en la respuesta de las encuestas del Programa Latinoamericano de Control de Calidad enviadas por el Malbrán a 30 días.
- La Administración Nacional de Laboratorios e Institutos de Salud (ANLIS),
 "Dr. Carlos G. Malbrán" (Argentina). Argentina enviará una lista de alertas de resistencia emergentes
- Cada integrante de la red nacional en cada país adaptará su propia lista de mecanismos emergentes de acuerdo a la realidad de cada uno de ellos.
- El avance que ha tenido la red de vigilancia ha dado origen al inicio de un proyecto de vigilancia a SAMR com, dando oportunidad a los países involucrados el desarrollo de nuevas metodologías y tecnologías.
- Se presento el avance de la herramienta WHONET-SatScan en la detección de brotes.
- Se integran a la Red Latinoamericana de Resistencia a los Antimicrobianos Brasil y, dentro del Caribe Inglés, aquellos países que mostraron interés y capacidad, proceso que será coordinado por el CAREC.
- Colombia se integrará al Programa Latinoamericano de Control de Calidad en el 2010.
- Los países podrán explorar los Acuerdos de Cooperación entre Países (TCC por sus siglas en inglés) para poder implementar nuevas metodologías y tecnologías

Recomendaciones

 Ante la importancia de la calidad de la muestra clínica en los resultados del laboratorio de microbiología, se propone la revisión de los materiales técnicos y Manual de toma de muestras existentes al respecto, por parte de los integrantes de la Red Latinoamericana de Vigilancia de las Resistencias Antimicrobianas y enviar los comentarios, correcciones y sugerencias a Aurora Maldonado y Jeannette Zurita. Ellas recibirán y revisaran los cambios y posterior envío a cada país. Fecha límite para entrega de contribuciones: marzo del 2010. En una siguiente etapa, este Manual actualizado será enviado a cada país para su adaptación y difusión.

- Se propone que cada país elabore sus normas nacionales en cuanto obtención y transporte de las muestras
- El laboratorio de referencia, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), "Dr. Carlos G. Malbrán" (Argentina), expone que se requiere de una buena coordinación, organización y financiamiento para dar apoyo a los países que conforman la red latinoamericana en el envío de cepas de resistencia inusual o caracterización de mecanismos de resistencia emergentes.
- Se propone la integración de un representante de la Red Latinoamericana de Vigilancia de las Resistencias Antimicrobianas en otras redes de vigilancia de las resistencias como *Pulsenet* y *GSS*.
- Reforzar la utilización de WHONET en los laboratorios de la Red de cada país.

Compromisos

 Los países participantes enviaran a la Oficina Regional de la OPS el listado de laboratorios de cada red (centros centinelas) en la cual distribuyeron los documentos traducidos de CLSI.

6 LISTA DE PARTICIPANTES

ARGENTINA

Alejandra Corso

Jefe de Servicio Antimicrobianos Instituto Nacional de Enfermedades Infecciosas (INEI)

ANLIS "Dr. Carlos Malbrán" Av. Velez Sarsfield 563 (1281) Buenos Aires, Argentina Tel: 011-54-11-4303-2812 E-mail: acorso@anlis.gov.ar

Marcelo Fabián Galas

Jefe Departamento de Bacteriología Instituto Nacional de Enfermedades Infecciosas (INEI) ANLIS "Dr. Carlos Malbrán" Av. Velez Sarsfield 563 (1281) Buenos Aires, Argentina Tel: 011-54-11-4303-2812 E-mail: mgalas@anlis.gov.ar

galasmf@yahoo.com.ar

BOLIVIA

Elizabeth Torrico

INLASA – Ministerio de Salud y Deportes Bioquímica Responsable Unidad Antimicrobianos y Diagnóstico de Patógenos asociados a IIH Pasaje Rafael Zapata Zubieta 1889 La Paz, Bolivia Tel: 591-2-226-670 Fax: 591-2-228-254 E-mail: eliza_torr64@hotmail.com elizatorr64@gmail.com

BRASIL

Lucía Helena Berto

Biomédica Coordinación General de Laboratorios de Salud Pública Secretaria de Vigilancia de Salud Ministerio de Salud

Brasilia, Brasil
Tel: 61-3213-8276

E-mail: lucia.berto@saude.gov.br

Heder Murari Borba

Gerente
ANVISA
Trecho 5
Area Especial 57/Lote 200 2° Andar

Tel: 55-61-3462-4014 E-mail: ggtes@anvisa.gov.br heder.borba@anvisa.gov.br

CANADÁ

Lai King Ng

Director, Bacteriology and Enteric Diseases Program Public Health Agency of Canada 1015 Arlington Street Winnipeg, Manitoba R3E 3R2 Tel: 1-204-789-2131 E-mail: Lai King Ng@phac-aspc.gc.ca

CAREC

Lisa Indar

Program Manager
Foodborne Diseases
Caribbean Epidemiology Centre (CAREC)
16-18 Jamaica Boulevard, Federation Park
Port of Spain, Trinidad and Tobago
Tel: 1-868-622-4261-2, ext 335
E-mail: indarlis@carec.paho.org

CHILE

Aurora Maldonado Ballesteros

Jefa de Sección de Bacteriología Instituto de Salud Pública Av. Marathon 1000 Ñuñoa Santiago, Chile Tel: 56-2-575-5430 56-2-575-5421

E-mail: amaldonado@ispch.cl

COLOMBIA

María Elena Realpe

Coordinadora Grupo Microbiología Instituto Nacional de Salud Av. Calle 26#51-20 Zona 6 CAN

Bogotá, Colombia

Tel: 011-57-220-7700 Ext 445 E-mail: mrealpe@ins.gov.co

Aura Lucía Leal

Coordinadora Grupo GREBO Universidad Nacional y la GREBO

Carrera 30 No 45-03

Facultad de Medicina. Departamento de

Microbiología Bogotá, Colombia

Tel: 011-57-1-269-2662 E-mail: allealc@unal.edu.co

COSTA RICA

Antonieta Jimenez

Responsable Sección Antimicrobianos CNR-Bacteriología INCIENSA Cartago, Costa Rica

Tel: 22 79 9911

E-mail: ajimenez@inciensa.sa.cr

CUBA

María Margarita Ramírez Alvarez

Especialista

Instituto de Medicina Tropical "Pedro Kourí" Autopista Novia del Mediodía Km. 6 y ½ La Lisa Ciudad de La Habana, Cuba

Tel: 011-537-204-0651 E-mail: ramirez@ipk.sld.cu

ECUADOR

Jeannete Zurita

Laboratorio de Microbiología Hospital Vozandes Villalengua Oe2-37 Quito, Ecuador

Tel: 011-593-2- 262-142 ext. 3183

E-mail: jzurita@hcjb.org.ec

ELSALVADOR

Miriam de Lourdes Dueñas

Coordinadora del Comité de Infecciones Nosocomiales

Hospital Nacional de Niños Benjamin Bloom Ministerio de Salud y Asistencia Social

Final 25 Avenida Norte y Prolongación Boulevard

Universitario

San Salvador, El Salvador Tel: 503-222-54114 ext. 280

503-221-18060

E-mail: lourdes_chicas@hotmail.com

ESPAÑA

Marta Tato

Microbióloga

Hospital Ramon y Cajal

Carretera Colmenar Viejo KM 9, 100

28029 Madrid, España

E-mail: mtato.hrc@salud.madrid.org

GUATEMALA

Estuardo Tercero Muxi

Jefe Laboratorio Nacional de Salud Ministerio de Salud Km 22 Barcenas, Villa Nueva Guatemala, Guatemala Tel: 011-502-565-18744

E-mail: estuardotercero@gmail.com

MÉXICO

Irma Hernández Monroy

Jefa del Departamento de Bacteriología

Prolongación Carpio No. 470, Col. Santo Tomás

México D.F., México

Tel: 011-52-55-5342 7550 ext.374 011-52-55-53-427574 directo

E-mail: irmahm57@gmail.com colent.indre@gmail.com

NICARAGUA

Enrique Alejandro Ruiz Luna

Responsable del Diagnóstico de No fermentadores y Mecanismos de Resistencia Antimicrobiana Centro Nacional de Diagnóstico y Referencia Complejo Nacional de Salud "Dra. Concepción Palacios"

Costado Oeste de la Colonia Primero de Mayo

Managua Nicaragua Tel: 011-505-2289-4604

Fax: (5050) 22897483

E-mail: earuizluna2113@yahoo.com

PANAMÁ

Rubén Darío Ramos Castro

Tecnólogo Médico

Laboratorio Central de Referencia en Salud Pública

Instituto Conmemorativo Gorgas de Estudios de la Salud

Avenida Justo Arosemena y Calle 35 Apartado Postal N°0816-02593 Panamá, República de Panamá

Tel: 507-527-4848 507-527-4834

E-mail: rramos@gorgas.gob.pa

microbiologiaclinica@gorgas.gob.pa

PARAGUAY

Mario Fabián Martínez Mora

Coordinador - Programa Antimicrobianos Laboratorio Central de Salud Pública Asunción, Paraguay

Tel: 011-595-21-294999 E-mail: mfmartin@ips.gov.py

mariomarmora@hotmail.com

Gustavo Adolfo Chamorro Cortesi

Jefe Dpto. de Bacteriología Laboratorio Central de Salud Pública Asunción – Paraguay

Asuncion – Paraguay Tel: 595-21-294-999

E-mail: bacteriologia@lcsp.gov.py

REPÚBLICA DOMINICANA

Loyda Mercedes González López

Responsable Programa AMR

Departamento de Bacteriología, Ministerio de

Salud

C/ Santo Tomás de Aquino Nº. 1 Esquina Corrrea

y Cidron Zona Universitaria

Santo Domingo, República Dominicana

Tel: 809- 682-2479 Móvil: 809-481-2934

E-mail: loidamgonzalez1@hotmail.com reynaovalles@hotmail.com

URUGUAY

Teresa Camou

Jefa de Unidad de Bacteriología Departamento de Laboratorios

Ministerio de Salud

Alfredo Navarro 3051 (acceso por M. Quintela)

11600

Montevideo, Uruguay

Tel: 598-1-487-2516 interno 108 E-mail: dlsp-bact@adinet.com.uy tcamou@chasque.net

USA

Thomas O'Brien

WHO Collaborating Center for Surveillance of Antimicrobial Resistance Brigham and Women's Hospital 75 Francis Street Boston, MA 02115

Tel: 1-617-732-7388

E-mail: tobrien@rics.bwh.harvard.edu

John Stelling

WHO Collaborating Center for Surveillance of Antimicrobial Resistance

Brigham and Women's Hospital 75 Francis Street Boston, MA 02115

Tel: 1-617-732-7388

E-mail: jstelling@rics.bwh.harvard.edu

VENEZUELA

Daniel Marcano

Adscrito a la Gerencia Sectorial de Diagnóstico y Vigilancia Epidemiológica

Instituto Nacional de Higiene, "Rafael Rangel" Ciudad Universitaria UCV, Los Chaguaramos

Caracas, Venezuela Tel: 011-58-212-693-3421 011-212-219-1739

E-mail: presidencia@inhrr.gob.ve danielmarcano2000@yahoo.com

NACIONALES

Jaime Chang

Coordinador Iniciativa contra las Enfermedades Infecciosas

USAID-Perú

Av. Encalada Cuadra 17 s/n Lima 33, Perú

Tel: 011-51-1-618-1266 E-mail: jachang@usaid.gov

Rosa Elena Sacsaquispe Contreras

Laboratório IRAs e IIH Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María Lima, Perú Tel: 011-51-1-617-6200 anexo 2121 011-51-1-998-552569

E-mail: rsacs@hotmail.com

Silvia Edith Florián Orchessi

Bióloga – Microbióloga
Instituto Nacional de Enfermeda

Instituto Nacional de Enfermedades Neoplásicas - INEN

Avda. Angamos 2520 Surquillo - Lima, Perú Tel: 011-51-1-710-6900 anexo 1402 E- mail: silviaflorian11@gmail.com

Johnny David Lucho Amado

Tecnólogo Médico Laboratorio IRAs e IIH Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María - Lima, Perú Tel: 011-51-1-617-6200 Ext 2121 E-mail: jlucho@ins.gob.pe

Ana María Meza López

Laboratorio Enteropatógenos Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María - Lima, Perú Tel: 011-51-1-617-6200 anexo 2117

E-mail: a.meza@ins.gob.pe

Sara Angélica Morales de Santa Gadea

Coordinadora Laboratorio IRAs e IIH Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María - Lima, Perú Tel: 011-51-1-617-6200 anexos 2131-2121

Móvil: 011-51-1-999-288601 E-mail: saramoralesdsg@yahoo.es

María Bertha Paredes Pérez

Tecnólogo Médico Hospital de Emergencias Pediátricas Av. Grau 800 La Victoria Lima, Perú Tel: 011-51-1-474-3200 Ext 402

Tel: 011-51-1-4/4-3200 Ext 402 E-mail: berthapp2@yahoo.es

Maria Luz Zamudio Rojas

Laboratorio Enteropatógenos Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María - Lima, Perú Tel: 011-51-1-617-6200 anexo 2117 E-mail: mzamudio@ins.gob.pe maluzamudio@hotmail.com

Victor Suárez

Director Enfermedades No Transmisibles Instituto Nacional de Salud Capac Yupanqui 1400 Jesús María - Lima, Perú Tel: 011-51-1-617-6200

Javier Orlando Soto Pastrana

Hospital Nacional Docente San Bartolomé
Tecnólogo Médico – Microbiólogo
Integrante del Comitê de Infecciones
Intrahospitalarias

Av. Alfonso Ugarte 825 - Lima, Perú Tel: 011-51-1-330-9010 anexo 318 E-mail: orlansoto@hotmail.com

OPS

Gabriel Schmunis

Asesor Temporero de la OPS

4256 Warren Street, NW Washington, DC 20016

Tel: 1-202-247-8575

E-mail: gabriel.schmunis@gmail.com

Jorge Matheu

Asesor Temporero de la OPS 2 Calle 18-73 Zona 15 Vista Hermosa I

Guatemala, Guatemala Tel: 011-502-2369-8011 011-502-5519-0393

E-mail: jorgematheu@yahoo.com

Pilar Ramon-Pardo

Asesora Resistencia Antimicrobiana OPS-WDC

526 23rd Street, NW Washington, DC 20037

Tel: 1-202-974-3901

E-mail: ramonpap@paho.org

Salvador García

Punto Focal Laboratorios OPS-ARG

Marcelo T. de Alvear 684, 4o. Piso 1058 Buenos Aires, Argentina

Tel: 011-54-11-4319-4200

E-mail: garciasa@arg.ops-oms.org

Jean Marc Gabastou

Asesor Laboratorios de Salud Pública

OPS-Ecuador

Av. Amazonas 2889 y la Granja

Quito, Ecuador

Tel: 011-5932-2460-330

E-mail: jgabasto@ecu.ops-oms.org

Mario Valcárcel

Asesor en Enfermedades Transmisibles

OPS-Perú Los Pinos

251 Urb. Camacho, La Molina

Lima, Perú

Tel: 011-51-1-319-5700

E-mail: mvalcarc@per.ops-oms.org

Vivien Lewis

Asistente Administrativo

OPS-WDC

527 23rd Street, NW Washington, DC 20037

Tel: 1-202-974-3002 E-mail: lewisviv@paho.org

Vilma Guzmán

Asistente Administrativo

OPS-Perú Los Pinos

251 Urb. Camacho, La Molina

Lima, Perú

Tel: 011-51-1-319-5700

AGRADECIMIENTO

La presente publicación contó con el auspicio y cooperación de la Agencia de los Estados Unidos para el Desarrollo Internacional, subsidio No LAC-G-00-07-00001-00 y la Agencia Española de Cooperación Internacional al Desarrollo.

ANEXO 1

VIGILANCIA DE LA RESISTENCIA: ESPECIES A VIGILAR Y ANTIBIÓTICOS A UTILIZAR

Microorganismo de origen comunitario

Cuadro 1. Salmonella y Shigella

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina	10 μg.	AMP	X	X
Amoxicilina-Acido clavulánico	20/10μg.	AMC	X	
Acido nalidíxico	30μg.	NAL	X	
Cefotaxima	30μg.	CTX	X	X
Cefoxitina	30μg.	FOX	X	
Ceftazidima	30μg.	CAZ	X	
Cloranfenicol	30μg.	CHL	X	X
Ciprofloxacina	5μg.	CIP	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Nitrofurantoína	300μg.	NIT	X	X
Tetraciclina	30 μg.	TCY	X	
Fosfomicina	50 μg	FOS	X	X

Cuadro 2. Escherichia coli (infección urinaria baja, no complicada)

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina	10μg.	AMP	X	X
Amoxicilina-Acido clavulánico	20/10μg.	AMC	X	X (AMS)*
Cefalotina	30μg.	CEP	X	X
Cefuroxima	30μg.	CXM	X	
Ciprofloxacina	5μg.	CIP	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Gentamicina	10μg.	GEN	X	X
Nitrofurantoína	300μg.	NIT	X	X

^{*}Ampicilina/sulbactam (10/10 µg)

Cuadro 3. Nisseria meningitidis¹

Antibiótico	Protocolo ampliado	Protocolo reducido
Penicilina	X	X
Ampicilina	X	X
Cefotaxima o Ceftriaxona	X	X
Cloranfenicol	X	X
Ciprofloxacina	X	X
Rifampicina	X	X
Ofloxacina	X	X
Cotrimoxazol	X	X
Tetraciclina	X	X

¹Solo por CIM

Cuadro 4. Streptococcus pneumoniae, invasivo (Informar por separado datos \leq 6 años y > 6 de edad)

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Oxacilina	1μg.	OXA	X	X
Penicilina ¹		PEN	X	X
Cefotaxima ¹		CTX	X	X
Imipenem ¹		IPM	X	X
Cefuroxima ¹		CXM	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Cloranfenicol	30μg.	CHL	X	X
Ofloxacina	5μg.	OFX	X	X
Rifampicina	5μg.	RIF	X	X
Tetraciclina	30μg.	TCY	X	X
Vancomicina	30μg.	VAN	X	X
Clindamicina	2 μg.	CLI	X	
Eritromicina	15 μg.	ERI	X	X
Levofloxacina	5 μg	LVX	X	X

¹Solo por CIM

Cuadro 5. Neisseria gonorrhoeae protocolo completo*

Antibiótico	Potencia	Sigla			
Penicilina	10 unidades	PEN			
Cefotaxima o Ceftriaxona	30μg.	CTX/CRO			
Ciprofloxacina	oxacina 5μg.				
Tetraciclina	TCY				
Prueba de betalactamasa (Nitrocefina)					

^{*}Nunca se definió protocolo reducido

Cuadro 6. Streptococcus \(\beta\)-hemolítico protocolo completo*

Antibióticos	Potencia	Sigla
Penicilina	10 U	PEN
Clindamicina	2 μg.	CLI
Eritromicina	15 μg.	ERI
Tetraciclina	30μg.	TCY

^{*}Nunca se definió protocolo reducido

Cuadro 7. *Haemophilus influenzae*, invasivos (Informar por separado datos \leq 5 años de edad y > 5 años o \leq 6 años y > 6 años de edad)

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina	10μg.	AMP	X	X
Ampicilina/Sulbactam	10/10μg.	SAM	X	X
Azitromicina	15μg.	AZM	X	X
Cefotaxima	30μg.	CTX	X	X
Cefuroxima	30μg.	CXM	X	X
Cefaclor	30μg.	CEC	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Cloranfenicol	30μg.	CHL	X	X
Levofloxacina	5μg.	LVX	X	
Ciprofloxacina	5μg.	CIP	X	X

Cuadro 8. Campylobacter spp.

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Eritromicina	15 μg.	ERI	X	X
Ciprofloxacina	5μg.	CIP	X	X
Amoxicilina-Acido clavulánico	20/10μg.	AMC	X	
Gentamicina	10μg.	GEN	X	
Imipenem	10 μg	IPM	X	
Tetraciclina	30 μg.	TCY	X	
Cloranfenicol	30μg.	CHL	X	

El ensayo de eritromicina y ciprofloxacina es imprescindible ya que son las drogas de 1ª y 2ª línea para el tratamiento de las infecciones intestinales por este germen. Amoxicilina/ácido clavulánico, gentamicina e imipenem son las drogas de elección para los casos de infección sistémica. Tetraciclina y cloranfenicol son drogas que se pueden usar dependiendo de la información disponible sobre la resistencia en el país.

Microorganismos de origen hospitalario

Cuadro 9. Enterobacterias

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina	10 μg.	AMP	X	X
Amoxicilina-Acido clavulánico	20/10μg.	AMC	X	X
Acido nalidíxico	30μg.	NAL	X	
Cefalotina	30μg.	CEP	X	X
Cefotaxima	30μg.	CTX	X	X
Cefoxitina	30μg.	FOX	X	
Ceftazidima	30μg.	CAZ	X	X
Ciprofloxacina	5μg.	CIP	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Nitrofurantoína	300μg.	NIT	X	X
Piperacilina/Tazobactam	100/10μg.	TZP	X	X
Gentamicina	10 μg	GEN	X	X
Amicacina	30 μg	AKN	X	X
Imipenem	10 μg	IPM	X	X
Meropenem	10 μg	MEM	X	X
Colistin	10 μg	COL*	X	
Cefepime	30 μg	FEP	X	X

^{*}sólo para identificación, no informar si no se hace CIM

Cuadro 10. Staphylococcus aureus y Staphylococcus spp. coagulasa negativa

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Oxacilina	1μg.	OXA	X	X
Penicilina	10 U	PEN	X	X
Cefoxitina	30μg.	FOX	X	X
Ciprofloxacina	5μg.	CIP	X	X
Clindamicina	2μg.	CLI	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
Doxiciciclina	30μg.	DOX	X	
Eritromicina	15μg.	ERI	X	X
Gentamicina	10μg.	GEN	X	X
Rifampicina	5μg.	RIF	X	X
Teicoplanina	30μg.	TEC	X	
Tetraciclina	30μg.	TCY	X	X
Vancomicina	30µg	VAN	X	X
Novobiocina	5μg	NOV	X	
Minociclina	30µg	MNO	X	X
Cloranfenicol	30μg	CHL	X	X

Cuadro 11. Enterococcus faecalis, Enterococcus faecium y Enterococcus spp.

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina	10μg.	AMP	X	X
Gentamicina	120μg.	GEH	X	X
Estreptomicina	300μg.	STH	X	X
Teicoplanina	30μg.	TEC	X	
Vancomicina	30μg.	VAN	X	X

Cuadro 12. Acinetobacter baumanii

Antibiótico	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Ampicilina/Sulbactam	10/10μg.	SAM	X	X
Amikacina	30μg.	AMK	X	X
Ceftazidima	30μg.	CAZ	X	X
Ciprofloxacina	5μg.	CIP	X	X
Cotrimoxazol	1.25/23.75µg.	SXT	X	X
1Colistín	10μg.	CL	X	
Doxiciclina	30μg.	DOX	X	
Gentamicina	10μg.	GEN	X	X
Imipenem	10μg.	IPM	X	X
Meropenem	10μg.	MEM	X	X
Piperacilina/Tazobactam	100/10μg.	TZP	X	X
Tetraciclina	30μg.	TCY	X	
Cefepime	30μg.	FEP	X	X
Piperacilina	100μg.	PIP	X	X

¹Informar sólo cuando se hace por CIM

Cuadro 13. Pseudomonas aeruginosa

Antibióticos	Potencia	Sigla	Protocolo ampliado	Protocolo reducido
Amikacina	30μg.	AMK	X	X
Aztreonam	30μg.	ATM	X	X
Ceftazidima	30μg.	CAZ	X	X
Cefoperazona	75μg.	CFP	X	X
Cefepime	30μg.	FEP	X	X
Ciprofloxacina	5μg.	CIP	X	X
Gentamicina	10μg.	GEN	X	X
Imipenem	10μg.	IPM	X	X
Meropenem	10μg.	MEM	X	X
Piperacilina	100μg.	PIP	X	X
Piperacilina/Tazobactam	100/10μg.	TZP	X	X
Colistín ¹	10μg.	CL	X	

¹Informar sólo cuando se hace por CIM.

ANEXO 2

RESISTENCIAS NATURALES A LOS ANTIBIÓTICOS DE LAS PRINCIPALES ESPECIES BACTERIANAS DE INTERÉS MÉDICO

La resistencia natural es característica de una especie bacteriana. Delimita el espectro de antibióticos y constituye una ayuda para la identificación. La resistencia natural se traduce por CIM superiores al valor crítico bajo de concentración del antibiótico en cuestión.

Tabla 1. Resistencia natural de los principales microorganismos en muestras clínicas

Microorganismo	Resistencia natural							
Bacilos gramnegativos no exigentes (no fastidiosos)	Penicilina G, oxacilina, macrólidos, ketólidos, lincosamidas, estreptograminas, ácido fusídico, glicopéptidos, oxazolidinonas.							
Bacilos gramnegativos exigentes (fastidio								
Haemophilus:	Penicilina, oxacilina, dicloxacilina, meticilina, macrólidos (ciclo de 16 átomos: espiramicina, josamicina, midécamicina), lincosamidas, metronidazole.							
Campylobacter	Aztreonam, novobiocina, estreptograminas trimetoprima, glicopéptidos.							
Campylobacter jejuni, Campylobacter coli y Campylobacter lari	Cefalosporinas de 1ª generación.							
Campylobacter fetus y Campylobacter lari	Quinolonas.							
Bacilos gramnegativos no fermentadores								
Pseudomonas aeruginosa	Aminopenicilinas, cefalosporinas de 1ª y 2ª generación, cefotaxima, ceftriaxona, ertapenem, kanamicina, tetraciclinas, cloranfenicol, trimetroprima, quinolonas, macrólidos, lincosamidas, tigeciclina, glicopéptidos, nitrofurantoína, rifampicina, metronidazole, quinupristin dalfopristin,							
Acinetobacter baumannii, Acinetobacter calcoaceticus	Aminopenicilinas, ticarcilina, piperacilina, aztreonam, cefalosporinas de 1ª y 2ª generación, ceftriaxona, cefotaxima, cefixime, ceftibuten, cloranfenicol, lincosamidas, macrólidos, tetraciclina, glicopéptidos, rifampicina, linezolid, daptomicina, ertapenem, fosfomicina, trimetroprima, furanos							
Otros bacilos gramnegativos no fermentadores	Aminopenicilinas, cefalosporinas de 1ª y 2ª generación, ertapenem. Ver también la tabla 3.							
Cocos grampositivos	Mecilinam, aztreonam, quinolonas, colistina.							
Staphylococcus saprophyticus	novobiocina.							
Staphylococcus colinii y Staphylococcus xylosus	novobicina, lincomicina							
Micrococcus	furanos.							
Steptococcus (incluyendo Steptococcus pneumoniae)	Aminoglucósidos (bajo nivel), pefloxacina.							

Microorganismo	Resistencia natural							
iviicioorganismo	Oxacilina, cefalosporinas, ertapenem, aminoglucósidos							
	(bajo nivel), lincosamidas, macrólidos, ketólidos,							
Enterococcus	tetraciclinas, pefloxacina, fosfomicina (bajo nivel),							
	sulfamidas.							
Enterococcus faecalis:	Lincosamidas, estreptograminas A.							
Emerococcus juecuus.	Doripenem, meropenem, ciprofloxacina, levofloxacina,							
Enterococcus faecium	ofloxacina, rifampicina.							
$Enterococcus\ gallinarum-Enterococcus$	Glicopéptidos 1							
casseliflvus/flavesems:	Gircopepidosi							
Familia Vibrionaceae								
Aeromonas spp	Aminopenicilinas (salvo Aeromonas trota), cefalosporinas							
Aeromonus spp	de 1ª generación (salvo Aeromonas veronni), ertapenem.							
Vibrio spp	Sulfonamidas, penicilinas y cefalosporinas de 1a generación							
Bacilos gram positivo								
Todos los bacilos gram positivos	Mecillinam, aztreonam, colistina, polimixina B, quinolonas							
Listaria monocytoganas	Oxacilina, cefalosporinas, lincosamidas, fosfomicina,							
Listeria monocytogenes	fluoroquinolonas (bajo nivel)							
Erysipelothrix rhusiopathiae	Glicopéptidos							
Commobactorium anabyticum icikaium	β-lactámicos, aminoglucósidos, macrólidos, lincosamidas,							
Corynebacterium arealyticum-jeikeium	sulfamidas							
Rhodococcus equi	Estreptograminas, lincosamidas							
Bacillus cereus	Penicilina G, aminopenicilinas, carboxipenicilinas,							
Bacillus cereus	cefalosporinas							
Nocardia asterioides- Nocardia farcinica	Trimetoprima, vancomicina, rifampicina, fluoroquinolonas							
Lactobacillus spp	Sulfamidas							
Lactobacillus heterofermentadores	Glicopéptidos							
Cocos gram negativo								
Neisseria spp	Trimetroprima, glicopétidos							
Neisseria meningitidis-Neisseria	TiD							
gonorrhoeae	Lincosamidas, colistina, polimixina B							
Branhamella catarrhalis	Licosamidas, trimetroprima.							
Moraxella spp	Trimetroprima.							
Microorganismos anaerobios estrictos								
	Aminoglocósidos, aztreonam (salvo Fusobacterium spp),							
Todas las especies	trimetoprima, quinolonas.							
	Aminopenicilinas, cefalosporinas de 1ª generación,							
Bacteroides grupo fragilis	cefamandole, cefotaxima, colistina, polimixina B,							
Ducie, outes grupo jruguis	glicopéptidos, fosfomicina							
Provotella spp	Glicopéptidos, fosfomicina							
Porphyromonas spp	Fosfomicina, colistina, polimixina B							
Fusobacterium spp	Macrólidos (bajo nivel)							
Fusobacterium spp Fusobacterium varium- F. mortiferum	Rifampicina							
Clostridium spp- Eubacterium	Knampicilla							
spp-Peptostreptococcus spp	Colistina, polimixina B, Fosfomicina							
spp-reptostreptococcus spp Clostridium difficile								
10/	Cefalosporinas Vancomicina (bajo nivel)							
Clostridium innocuum								
Actinomyces spp-Propionibacterium spp	cefalosporinas 1ª generación, nitroimidazoles, ornidazol.							
Mobiluncus spp	Nitroimidazoles							
Veillonella spp	Macrólidos (bajo nivel), glicopéptidos							

Enterobacterias

Tabla 2. Resistencia natural de las enterobacterias.

Especie	AM	AMC	TIC	CIG	PIP	FOX	CTT	CMA	CXM	GM	TET	COL	FT
Klebsiella spp.	R		R										
C. diversus	R		R										
C. freundii	R	R		R		R	R						
E. cloacae	R	R		R		R	R						
E. aerogentes	R	R		R		R	R						
S. marcescens	R	R		R	R			R	R		R*	R	
P. mirabilis											R*	R	R
P. vulgaris	R			R				R	R		R*	R	R
M. morganii	R	R		R							R*	R	R
P. stuartii	R	R		R						\mathbb{R}^1	R	R	R
Y. enterocolitica	R			R				R	R				
Aeromonas spp.	R												

R: resistencia natural

AM: aminopenicilinas; AMC: amoxicilina/ácido clavulánico; TIC: ticarcilina; CIG: cefalosporinas de 1ª generación; FOX: cefoxitina; CTT: cefotetan; CMA: cefamandol; CXM: cefuroxima; GM: gentemicina; TET: tetraciclinas, incluyendo la tigeciclina; COL: colistina, polymyxina B; FT: nitrofuranos.

Tabla 3. Resistencia natural de los bacilos gramnegativos no fermentadores.

Especie	TIC	TCC	PIP	CTX	CAZ	IPM	QUI	AMG	TET	CHL	TMP	FOS	COL
S. maltophilia	R		R	R		R	R	R	R*		R	R	
В. серасіа	R	R				R	R			R	R	R	R
A. denitrificans				R				R	R				
C. meningosepticum	R	R	R	R	R	R	R						R
O. anthropi	R	R	R	R	R								

R: resistencia natural

TIC: ticarcilina; TCC: ticarcilina + ácido clavulánico; PIP: piperacilina; CTX: ceftaxima; CAZ: ceftazidima; IPM: imipenem; QUI: quinolonas; C: cloranfenicol; TMP: trimetoprima; FOS: fosfomicinea COL: colistina, polymyxine B; TET: Tetraciclinas.

^{*}Excepto tigeciclina

¹ – La resistencia natural puede expresarse débilmente y se traduce por CIM cercanas al valor crítico bajo. Esto debe ser comprendido por la lectura interpretada del antibiograma.

^{*}Excepto tigeciclina