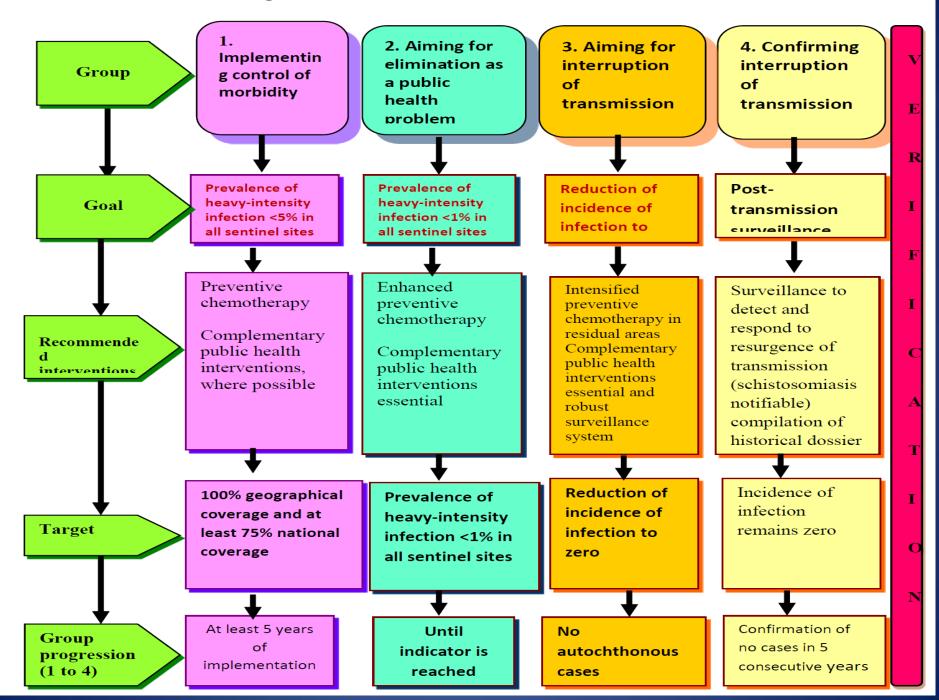

Schistosomiasis Morbidity Control

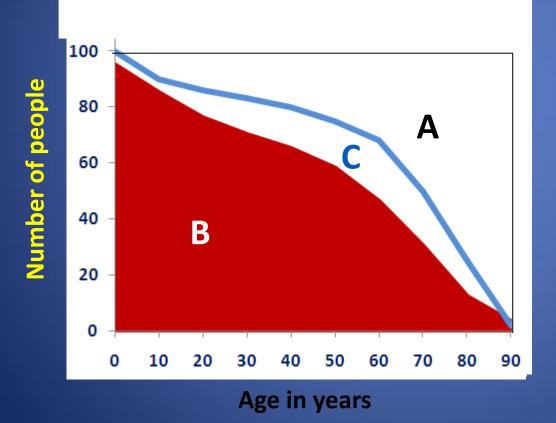
PAHO Schistosomiasis Regional Meeting Joseph Cook MD 22 October 2014


Morbidity control outline

- Evolution of morbidity control –based on some studies on St. Lucia
- Morbidity control as an early program of schistosomiasis disease management
- Examples of morbidity control on a larger population basis

100 Million ---- asymptomatic

Progression towards elimination of schistosomiasis



Why morbidity control

- Ability to treat the most heavily infected— 5-14 year olds
- Easier access to this group through schools
- Ability to reverse clinical signs of morbidity
- Ability to reach and reduce the largest % of eggs reintroducing infection into communities
- Cost effective: Initially high cost of drug and hesitancy to treat communities without definitive diagnosis

Calculation of DALYs

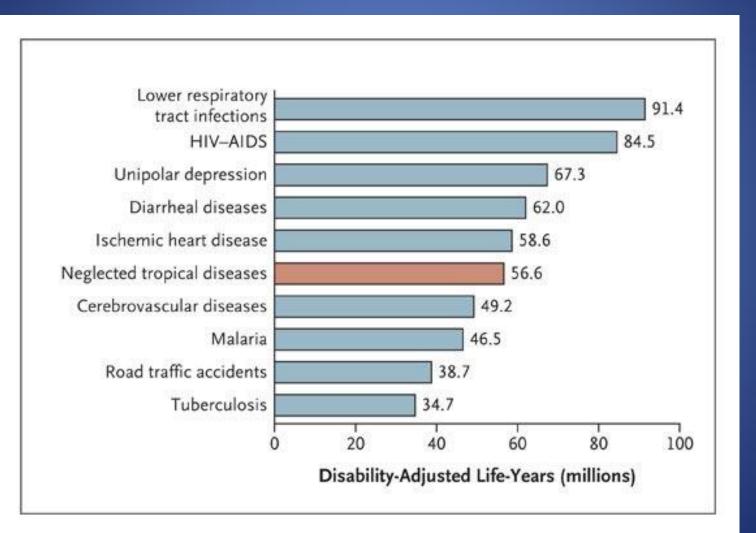
Hypothetical population **B**

A Deaths

B Time spent in perfect health

C Time spent in less than perfect health

 $\mathbf{D}\mathbf{A}\mathbf{L}\mathbf{Y} = \mathbf{A} + \mathbf{C}$


DALY – example calculation

Mariam f	rom Burkina Faso with Se	chistosomiasis
Infection	Death	
.5 – 35)	35 years	82.5 years
		10 years 35 years .5 – 35)

YLD = Years Lived with a disability* (25) x Disability weighting (0.55)
 = 13.75 years

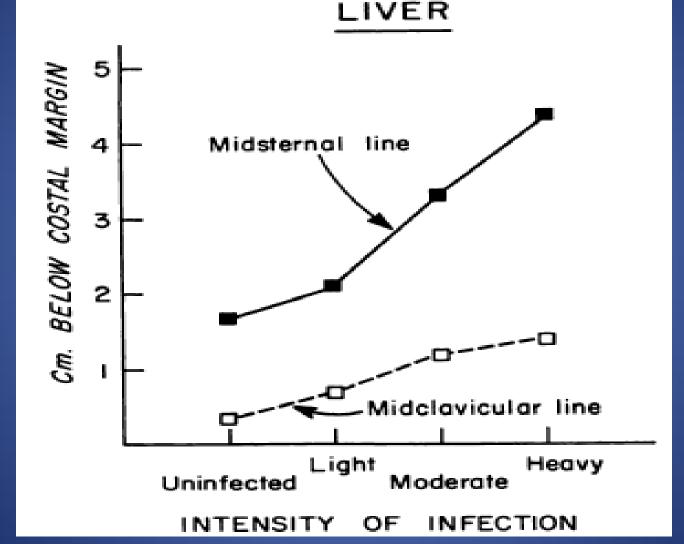
DALY = **YLL** (47.5) + **YLD** (13.75) = 61.25 years

The 10 Leading Causes of Life-Years Lost to Disability and Premature Death in low income countries

Hotez P et al. N Engl J Med 2007;357:1018-1027

Morbidity related to intensity

 Heavy/Mod
 Light
 Uninfected


 N=58
 n=57
 n=23

 >100 epg
 1-99
 0

 Liver >2.5cm
 15 (25.9%)
 7 (12.3)
 2(8)

 below MCL
 Splenomegaly
 5(8.6)
 0 (0)
 0

Hepatomegaly related to intensity

Cook, 1974 J AmSocTMH

Response to Rx related to intensity of infection in 143 patients 6 - 24 months

Intensity of	Geometric Intensity of No. mean, egg			No viable eggs*			
infection		mean, egg excretion	Hepatomegaly	Splenomegaly	6 months	12 months	24 months
Light (0-50)†	66	12.2†	11 (17%)	5 (8%)	45/53 (85%)	51/56 (91%)	54/62 (87%)
Moderate (51-399)	64	134.8	22 (35%)	11 (17%)	51/59 (86%)	49/59 (83%)	40/59 (68%)
Heavy (≥400)	13	629.5	6 (46%)	2 (15%)	10/13 (77%)	7/9 (78%)	7/12 (58%)

* Denominator is not constant because hatch tests could not be done on each patient at each follow-up visit. † No. eggs/ml feces.

Cook 1974 AMJTROPMED&HYG 23:910

Evaluation of Hycanthone Rx up to 24 months

Months after treat- ment	No. patients treated	No eggs by any method	No viable eggs*	Total reduction in egg excretion
6	340	179/340(53%)	274/308(89%)	98%
12	223	118/223(53%)	175/202(87%)	98%
24	198	97/198(49%)	119/172(69%)	86%

J Cook JAmSocTropMed 1974

Therapeutic effect of Rx on liver and spleen enlargement

Clinical state	Age group (years)	No. patients	below cost	xtension tal margin cm)	Unchanged	Significant decrease*	Normal	Time to maximum decrease
			MCL	MSL				
Hepatomegaly	0-9	14	2.5	5.6	2	12	9	14 months
	10-14	18	2.4	7.1	0	18	10	16 months
	≥15	7	3.1	8.8	1	6	2	18 months
			Mean Ha	ckett grad	ie			
Splenomegaly	0-9	2	2.	.0	0	2	2	6 months
	10-14	11	1.	.8	1	10	5	6 months
	≥15	5	2.	.4	2	3	2	12 months
* For liver, decre	ase of >2 cm or	regression to no	ormal. For	spleen, dec	rease of one	Hackett grad	e.	

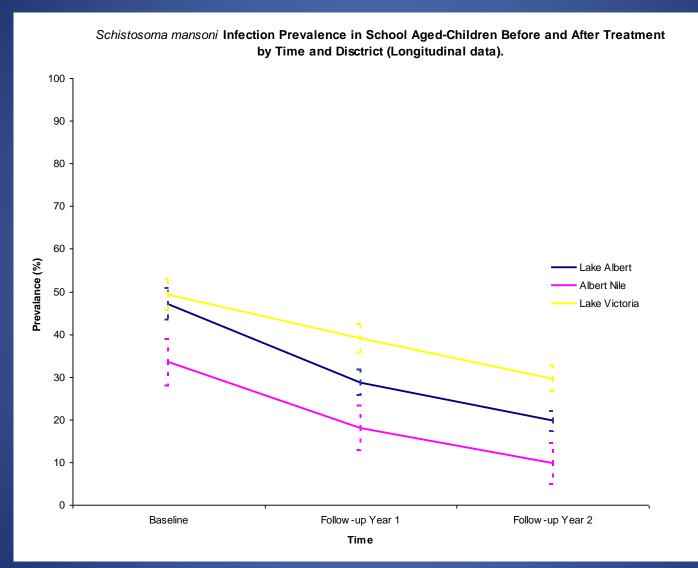
Cook 1974 AMJTROPMED&HYG 23:910

Impact of repeated treatment

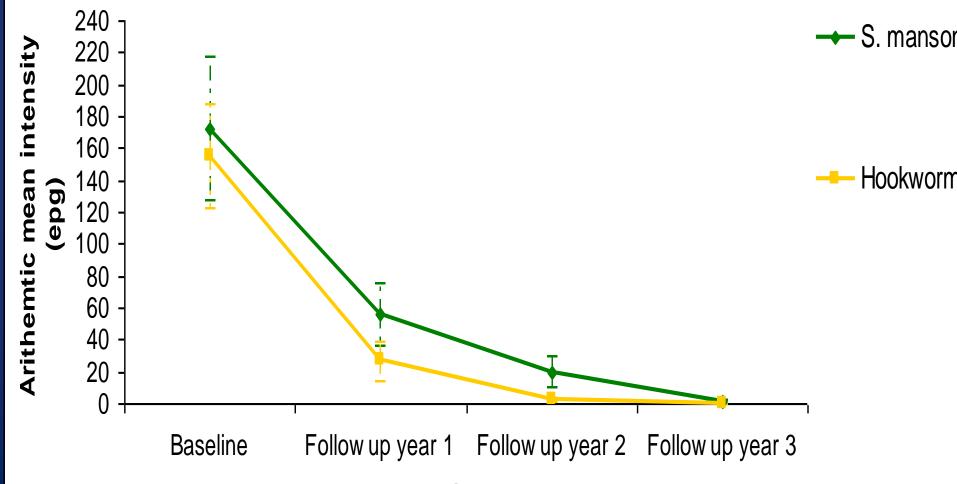
- Almost immediate impact on prevalence and intensity of infection.
- Reduction or regression of morbidity.
- However impact will depend on the levels of transmission
 - Can have a high reinfection rates with low intensities of infection
 - No apparent effect on prevalence

Strategies for control

- Morbidity control chemotherapy at population level
- Infection control treatment of infected individuals
- Transmission control potable water, sanitation, environmental modification, and snail control,
- Not mutually exclusive as all operational components will result in reduced infection levels and less disease
- Strategy will depend on the situation and available resources


Operational components for control

- Chemotherapy
- Health education
- Provision of safe water and sanitation
- Snail control
- Use of these components will depend on the situation


143 Patients followed 2 years

Age group (years)	No. patients	Time after treatment	No eggs by any method	No viable eggs*	Reinfected	Total reduction in egg excretion
0-14	84	6 wks	46/84 (55%)	Not done	0	98%
		6 mos.	37/84 (44%)	61/74 (82%)	0	98%
		12 mos.	35/84 (42%)	60/71 (85%)	2 (2%)	97%
		24 mos.	37/84 (44%)	57/79 (72%)	15 (18%)	85%
≥15	59	6 wks	34/59 (58%)	Not done	0	98%
		6 mos.	38/59 (64%)	45/51 (88%)	0	99%
	,	12 mos.	35/59 (59%)	47/53 (89%)	0	99%
		24 mos.	36/59 (61%)	44/54 (82%)	7 (12%)	90%
TOTAL	143	6 wks	80/143(56%)	Not done	0	98%
		6 mos.	75/143(53%)	106/125(85%)	0	99%
		12 mos.	70/143(49%)	107/124(86%)	2 (1%)	98%
		24 mos.	73/143(51%)	101/133(76%)	22 (15%)	87%

Uganda: Narcis Kabatereine / Schisto Control Initiative 2003-2005

Uganda (Baseline, Year 1, Year 2, Year 3 in 3 districts completed so far) Arithmetic mean intensity of infection for 391 children successfully followed up

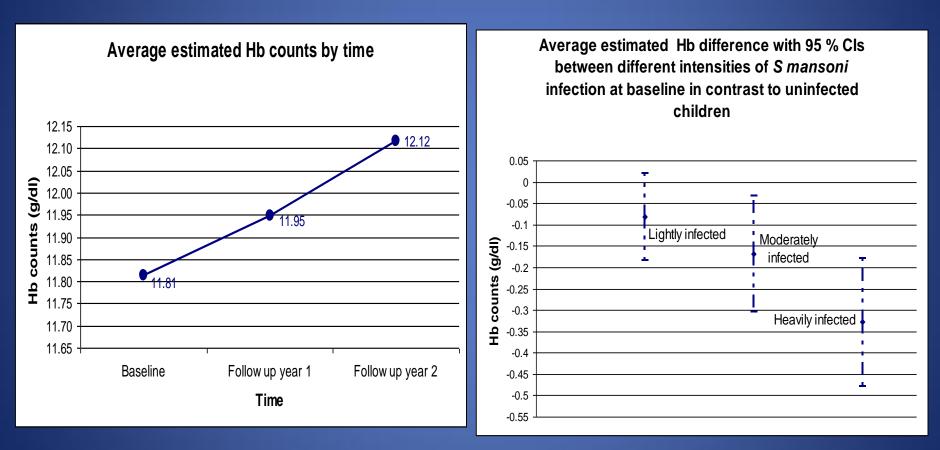
Timo

ULTRASOUND (CHILDREN)

Category of morbidity	% age affected	Year of examination
Pattern B fibrosis (early change)	39.4	2003
	9.4	2004
	1.7	2005

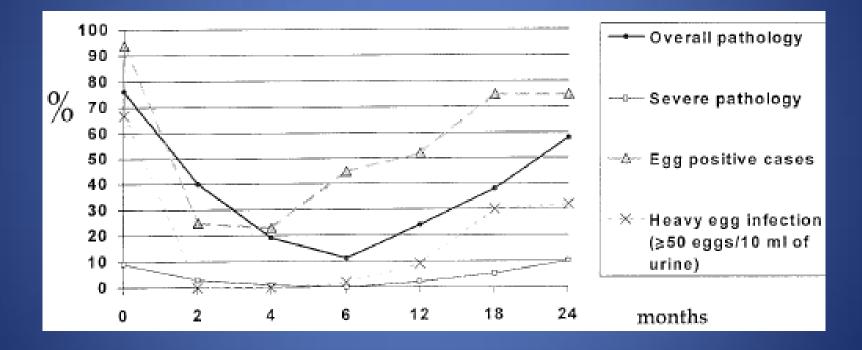
• No child hard pattern C-F

Narcis Kabatereine - Uganda

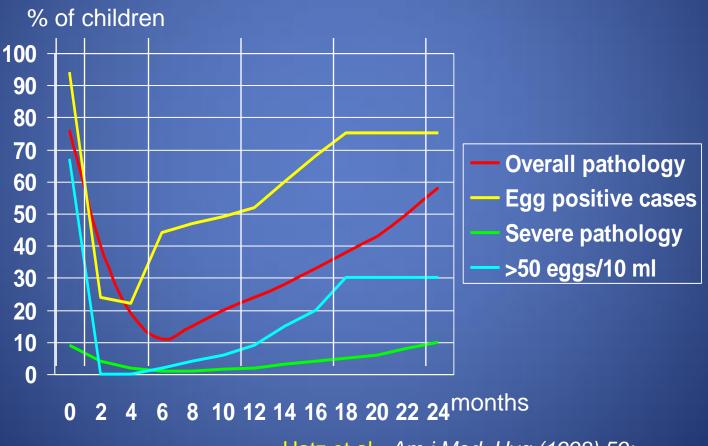

ULTRASOUND (CHILDREN) Continued

Category of morbidity	% age affected	Year of examination
Dilated portal vein	17.8	2003
	2.2	2004
	3.3	2005

•No child had marked dilation of Portal vein throughout the study. Narcis Kabatereine - Uganda


Results

3-level random intercepts model for Haemoglobin counts before and 2 years after praziquantel and albendazole treatment controlling for age and sex among 1789 Uganda schoolchildren 2003-2005


Evolution of egg output and S. haematobium pathology after Rx

Ifakara, Tanzania

CF Hatz, et al Am. J. Trop. Med. Hyg., 59(5), 1998, pp. 775–781


Evolution of *Schistosoma haematobium*-related pathology over 24 months after treatment with praziquantel among school children in southeastern Tanzania

Hatz et al., Am j Med Hyg (1998) 59: 775-781Trop

Why morbidity control

- Ability to treat the most heavily infected— 5-14 year olds
- Easier access to this group through schools
- Ability to reverse clinical signs of morbidity
- Ability to reach and reduce the largest % of eggs reintroducing infection into communities
- Cost effective: Initially high cost of drug and hesitancy to treat communities without definitive diagnosis

100 Million ---- asymptomatic