Cardiosvascular Disease Prevention through Dietary Salt Reduction

First PAHO Expert Group Meeting

Washington, D.C.

9-10 September 2009

Cardiovascular Diseases Prevention through Dietary Salt Reduction

9 - 10 Sentember 2009

Cardiovascular Disease Prevention

Through Dietary Salt Reduction

Latin American Society of Nephrology and Hypertension

Department of Nephrology and Mineral Metabolism National Medical Science and Nutrition Institute Salvador Zubirán Mexico City, MEXICO

Ricardo Correa-Rotter

Epidemiologic Transition and First Five Causes of Death in Mexico

Correa-Rotter ISPD 05

Prevalence of High Blood Pressure in Mexico by Age Groups

Hypertension In Latin America

	Prevalence (%)
Argentina	28
Brazil	27
Chile	34
Colombia	13
Costa Rica	25
Cuba	19
Ecuador	29
Mexico	31
Paraguay	35
Peru	24
Rep Dom	25
Uruguay	33
Venezuela	32

MEAN

Table 2. Trends in awareness treatment, and control of high blood

pressure in addits age				
	NATI		UTRITION EXAMINATION SURVEY, PERCENT	
		III (PHASE 1	III (PHASE 2	
	(1976–80)	1988–91)	1991–94)	1999–2000
Awareness	51	73	68	70
Treatment	31	55	54	59
Control [†]	10	29	27	34

- * High blood pressure is systolic blood pressure (SBP) ≥140 mmHg or diastolic blood pressure (DBP) ≥90 mmHg or taking antihypertensive medication.
- † SBP <140 mmHg and DBP <90 mmHg.</p>

Sources: Unpublished data for 1999–2000 computed by M. Wolz, National Heart, Lung, and Blood Institute; JNC 6.¹

LA Registry 1992-2005. Treatment of ESRD, prevalence rate, all modalities

RRT prevalence rates in Puerto Rico, Chile and Uruguay 1199, 904 and 863 pmp, respectively. Dialysis prevalence rates: 380.8 pmp (HD 272.8, DP 108), Functioning graft 97.4 pmp

Changes in Food Expenditure in Mexico 1986 - 2000

Rivera-Dommarco J, Barquera et al. Public Health Nutrition, 2002: 5(1A), 113-122

Potassium Intake and Hypertension

- 1. Potassium decreased vascular responsiveness to vasopressors, such as norepinephrine, therefore inducing vasodilation.
 - Enhanced release of nitric oxide (endothelium-derived relaxing factor) by vascular endothelial cells.
- 2. Potassium may induce changes in sodium excretion: potassium depletion diminishes while potassium loading increases sodium excretion, apparently through changes in proximal or loop sodium reabsorption.

- Sodium retention probably contributes to the 5 to 7 mmHg rise in blood pressure induced by a low potassium diet in patients with essential hypertension.

- Loss of sodium probably contributes to the equivalent fall in blood pressure that can result from correction of diuretic-induced hypokalemia or from increasing potassium intake by 40 to 50 meq/day.