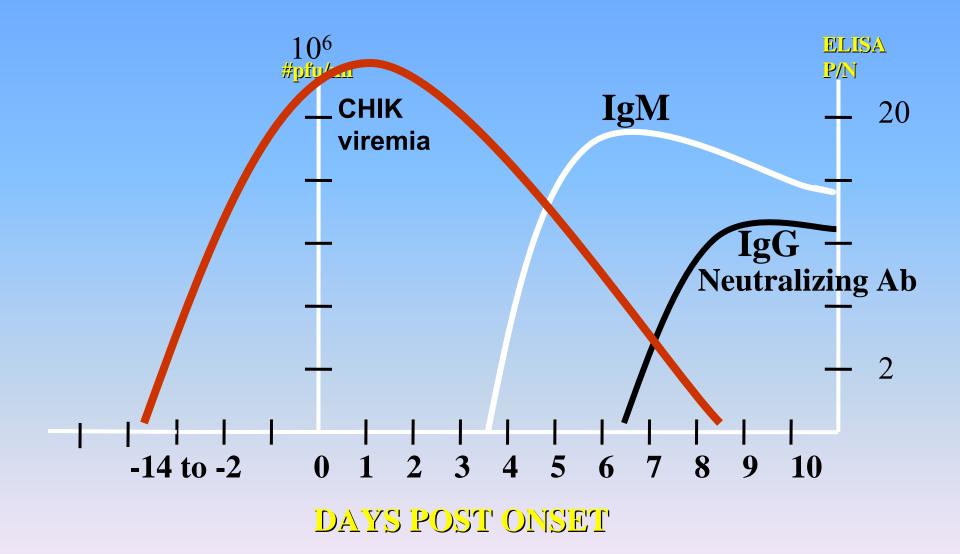
Laboratory Testing for Chikungunya Virus

Robert S Lanciotti Arbovirus Diseases Branch Diagnostic & Reference Laboratory CDC, Fort Collins, Colorado

Presentation Summary

 Technology, Testing Algorithm, & Available Tests


CDC Experience with CHIK Testing

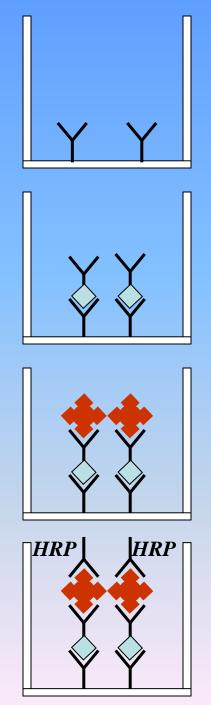
Proposed Algorithm for CHIK Testing

Laboratory Diagnosis of Arboviruses

- What tools are available for human diagnosis & environmental surveillance?
- What methods are desirable in an emergency involving an arbovirus outbreak?
 - Technology is easily transferable
 - Training, gold standards & calibrated panels have been established
- What have we learned from West Nile Virus?
 - Importance of comprehensive broad-based testing algorithms
 - Importance of collaborations

Simplified Depiction of CHIK Human Viremia & Immune Response

<u>UnifeeT vroferodeL fnerru</u> <u>seeurivodrA rot vpeterf</u>

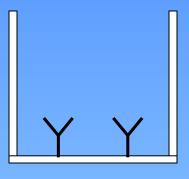

Human Infection

- Acute antibody (IgM) in serum and/or csf.
 - IgM ELISA or Microsphere Immunoassay
 - Confirmation by PRNT
- Seroconversion in paired specimens
 - IgG ELISA and/or 4-fold rise in neutralizing antibody by PRNT
- Detection of virus and/or viral RNA in serum and/or csf.
 - Real time RT-PCR, Consensus RT-PCR, or virus isolation

Environmental Surveillance

- Detection of virus and/or viral RNA in mosquito vectors or amplifying hosts.
 - Real time RT-PCR, Consensus RT-PCR, or virus isolation

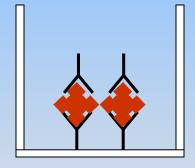
Serological Assays

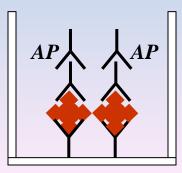

IgM Capture ELISA

Coat With Goat anti-Human IgM
 ▶ 4° Overnight

Add Patient Serum @ 1:400
 ▶ 37° 1 Hour

3. Add Antigen → 4° Overnight


4. Add HRP anti-group McAb
▶ 37° 1 Hour

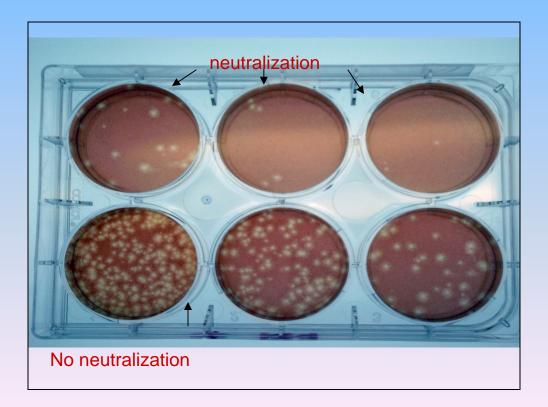


IgG ELISA

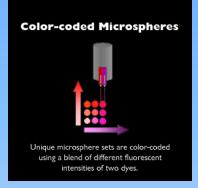
Coat with anti-group McAb
 ▶ 4° Overnight

2. Add viral antigen → 4° Overnight

3. Add Patient serum @ 1:400
 ▶ 37° 1 hour


4. Add AP anti-human IgG McAb
▶ 37° 1 Hour

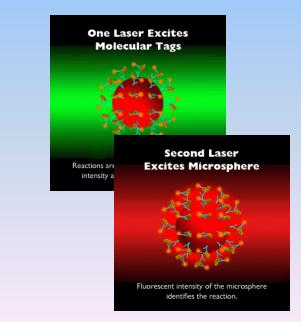
Interpretation of Results


- P/N: O.D. patient serum/O.D. negative control serum.
- P/N > 3 = positive
- P/N < 2 = negative
- P/N 2-3 = equivocal
- Positive & Negative Controls (including negative antigen) within correct range.

Neutralization Assay for West Nile Virus

Plaque Reduction Neutralization Test (PRNT)
Patient serum dilutions + 100 pfu of virus; incubate with cells.
100 plaques = no virus antibody present
90% reduction of virus plaques = virus antibody present

Microsphere-based assay to detect IgM to WN and SLE viruses in human serum



Beadsets are coupled to – 6B6C-1 One beadset is reacted with _ WNV antigen and the other with SLEV antigen

Add reacted beadsets to IgGdepleted serum and anti-IgM R-PE.

- •The assay gives concurrent WN and SLE virus IgM values
- •All samples reacted on viral and control antigens
- •Time of reaction 1.5 hours

•Assay for multiplex WN, SLE, DEN 1-4, LAC, JE, POW, MVE, YF, RR, MAY, VEE, EEE, WEE, BF, CHIK, in progress.

IgM Cross-Reactivity of Human CHIK Cases With Other Alphaviruses

CHIK IgM Capture ELISA (P/N)

СНІК	RR	ONN	VEE	MAY	EEE
12.3	1.5	15.3	0.89	1.9	1.2
10.6	1.2	13.9	1.1	1.9	1.3
14.5	1.7	17.3	1.1	3.1	0.89
20.4	0.92	20.7	1.5	7.1	1.8
26.6	4.9	27.4	2.2	1.7	1.5
21.2	1.5	24.7	2.2	1.2	1.6
15.3	1.5	8	1.6	1.9	2.2
31.3	1.5	24.6	1.7	2.9	1.8
22	1.6	15.9	1.8	1.4	1.4
18.8	0.59	13.1	1.2	1.5	1.1
34.3	3.7	22.6	1.6	2.8	9.1

Phylogenetic Tree of Alphaviruses

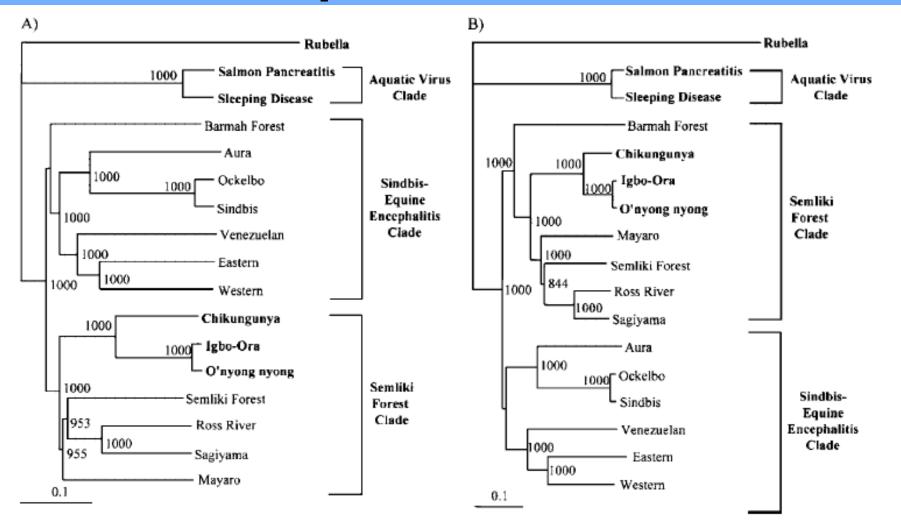


Figure 1. Phylograms examining the complete genomes of the alphaviruses. These trees were generated using Clustal X

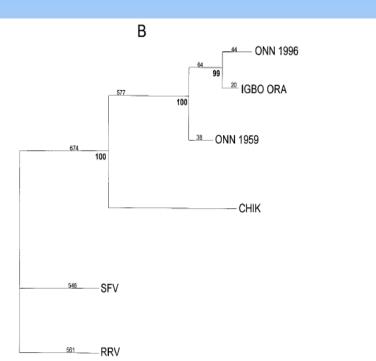
Chikungunya Virus Detection Asays

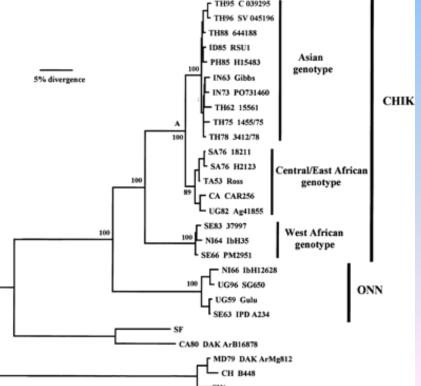
Sensitivity of WN Virological Assays

TEST	DETECTION	DETECTION	ASSAY TIME
VecTest	100,000 pfu/ml	NT	15 min
CDC Ag-cap EIA	10,000 pfu/ml	NT	24 hour
RAMP	1,500 pfu/ml	NT	90 min
Isolation in SMB	100 pfu/ml	NT	5-10 days
Isolation in Vero	100 pfu/ml	NT	5-10 days
RT-PCR-standard	5 pfu/ml	2,500 copies/ml	8 hours
NASBA	0.1 pfu/ml	50 copies/ml	4 hours
RT-PCR-probe	0.1 pfu/ml	50 copies/ml	4 hours
GenProbe TMA	0.02 pfu/ml	10 copies/ml	4 hours

NAAT Assay Platform Options

- Standard RT-PCR
 - Agarose gels, nested
- Real time RT-PCR
 - Single\multiplex format
 - SYBR Green
- NASBA (nucleic acid sequence based amplification)
 ECL, molecular beacons
- LAMP (Loop-mediated isothermal amplification)


Comparison of CHIK NAAT Assays:


Assay	Sensitivity	Contamination	Start-up cost ¹	Reagent cost ¹	Thru-put/ automate?	
RT-PCR (several)> 100 copiesSYBR (several)> 100 copies		Yes	minimal	\$4.80	Low/no	
		No \$25,000		\$3.73	High/yes	
Real-Time (several)	5-100 copies	No	\$25,000	\$2.80	High/yes	
NASBA RT (1 published)	200 copies	No	\$25,000	\$8.00	Low/no	
LAMP (1 published)	20 copies	No	\$17,000	\$5.00	Low/no	

¹ Start-up cost for iCycler; reagent cost per reaction all QIAGEN kits except for LAMP

Genetic Lineages of Chikungunya Virus

- Chikungunya virus is within the Semliki Forest Virus complex.
- Chikungunya viruses are genetically classified into 3 clusters;
 - Asian, West African, and Central/South/East African.
 - 2006 Indian Ocean epidemic caused by CHIK virus from the CSEA cluster.

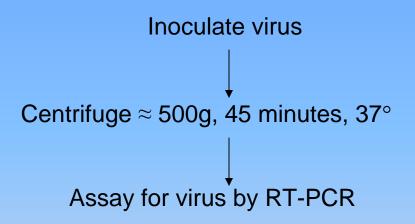
CDC CHIK Real-Time RT-PCR Assay

Chikungunya Virus in US Travelers Returning from India, 2006

Robert S. Lanciotti,* Olga L. Kosoy,* Janeen J. Laven,* Amanda J. Panella,* Jason O. Velez,* Amy J. Lambert,* and Grant L. Campbell*

	Table 2. Sensitivity and specificity of chikungunya virus (CHIKV) oligonucleotide primers used in real-time reverse transcription–PCR assay							
Primer Genome position* Sequence $(5' \rightarrow 3')$ Sensitivity† Specificity‡								
	CHIKV 874	874-894	AAAGGGCAAACTCAGCTTCAC					
	CHIKV 961	961-942	GCCTGGGCTCATCGTTATTC	0.3	CHIKV			
	CHIKV 899-FAM§	899-923	CGCTGTGATACAGTGGTTTCGTGTG					
	CHIKV 6856	6856-6879	TCACTCCCTGTTGGACTTGATAGA					
	CHIKV 6981	6981-6956	TTGACGAACAGAGTTAGGAACATACC	0.9	CHIKV			
	CHIKV 6919-FAM	6919-6941	AGGTACGCGCTTCAAGTTCGGCG					

- Developed 4 primer/probe sets
- Detects all CHIK genotypes (WA, SCEA, & Asia)
- Analytical sensitivity; 25 copies/reaction


Controls for RT-PCR Assays

- Negative Controls
 - Negative Extraction Controls
 - Extract RNA from several negative specimens
 - No Template Controls (NTC)
 - Add water to the amplification reaction
- Positive Controls
 - Positive Extraction Controls
 - Extract RNA from a quantitative range of positive controls
 - Positive RNA Control
 - Add template RNA to amplification reaction
 - Internal RNA Control
 - Non-template RNA added to monitor amplification conditions in every sample

Real Time RT-PCR Interpretation of Results

- All positive controls yield predicted result, including appropriate Ct values
- All negative controls negative
- Ct value < 38 *presumptive positive*
- Ct value > 38 < 45 *equivocal*
- Ct value > 45 negative
- All presumptive positive and equivocal specimens are re-tested (including RNA extraction) with a second set of primer pairs

Virus Isolation in Shell Vials

**2-10 fold increase in sensitivity for alphaviruses, flaviviruses, bunyaviruses with CPE observed 2-3 days earlier compared to flask isolation

Serological & RT-PCR Test Results of CHIK Infected Returning Travelers

Chikungunya Virus in US Travelers

	Table 1. Diagnostic test results for 35 travelers infected with chikungunya virus (CHIKV), 2006*									
					Virus isolation			Days from onset of		
		lgM	lgG		(Vero	RT-	Viremia,	illness	State of US	
	Sample	ELÍSA†	ELĪSA†	PRNT‡	cells)	PCR§	PFU/mL¶	to collection	residence	Return date, 2006
Г	1	17.7	3.2	640	-	-	NA	0	NJ	10/12
	2	1.7	1.7	<10	-	+	10 ^{4.0}	1	CA	Before 11/28
	3	1.2	1.1	ND	+	+	10 ^{4.1}	1	IL	9/29
	4	1.8	NS	ND	+	+	10 ^{6.8}	2	CA	Before 9/16
	5	1.2	0.76	ND	+	+	10 ^{5.1}	2	MA	9/10
	6	1.8	1.6	<10	+	+	10 ^{6.0}	3	PA	Before 8/20
	7	1.6	1.2	ND	+	+	10 ^{5.3}	3	CA	10/2
	8	NS	1.4	ND	-	+	10 ^{3.9}	4	WI	10/9
	9	22.0	4.3	5,120	-	-	NA	4	CA	Before 10/6
	10	1.1	0.95	<10	-	+	10 ^{4.5}	6	CA	Before 8/13
	11	7.4	0.96	40	-	_	NA	7	CA	Before 9/23
	12	15.0	0.60	320	-	-	NA	8	CT	Before 7/6
	13	26.2	1.2	160	ND	-	NA	8	DC	Before 10/16
	14	12.9	5.8	1,80	ND	-	NA	10	CA	Before 9/22
	15	38.8	2.3	2,560	ND	ND	NA	19	CT	Before 7/6
	16	12.7	1.5	640	ND	-	NA	20	IL	8/23
	17	16.9	4.8	640	ND	-	NA	30	IL	6/25

Table 4. Discussed in test and the face 25 test along info at a divide ability many string. (CLIII/A): 2000*

CHIK Laboratory Testing at DVBID 2006-Present

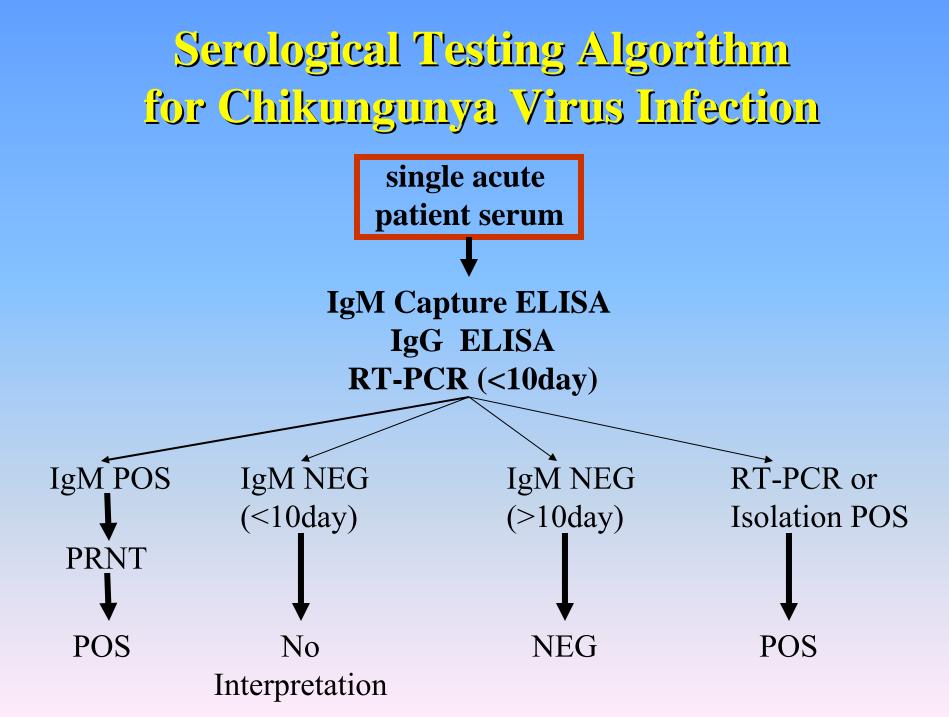
Confirmed approximately 75 CHIKV infections from returning travelers

80% of specimens collected day 1-8 post-onset are real-time RT-PCR and/or isolation positive.

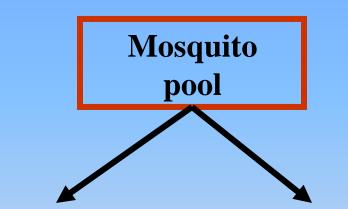
16 virus isolations Calculated viremia 3.9-6.8 log10 PFU/ml**

**≈ 4 log10 PFU/ml sufficient to infect U.S Ae. Aegypti and Ae. Albopictus

CHIK Laboratory Testing at DVBID 2006-Present


Confirmed approximately 75 CHIKV infections from returning travelers

45% of specimens collected day 1-8 post-onset are IgM/PRNT positive.


Summary:

- Day 1-3: RT-PCR/Isolation POS Day 4-8: RT-PCR/Isolation POS/NEG
- >Day 8: RT-PCR/Isolation NEG

IgM PRNT NEG IgM PRNT POS/NEG IgM PRNT POS

Environmental Testing Algorithm for Chikungunya Virus Detection

Real-time RT-PCR

Virus isolation

Consensus RT-PCR & Nucleic acid sequencing

CDC Response to Potential Chikungunya Introduction to the Americas: Proposed Laboratory Response

<u>Testing</u>

- Confirmatory testing of human and/or mosquito specimens.
- Virus sequencing

<u>Training & Technology Transfer</u>

- Training at CDC or on-site training
- Protocol & reagent transfer
- Proficiency assessment

CDC Arbovirus Proficiency Program 2000 - Present

- Comprehensive laboratory training in IgM ELISA, IgG ELISA, real time RT-PCR, plaque reduction neutralization test (PRNT), and microsphere immunoassay.
- 2000-2007 training provided to over 100 public health laboratorians representing all 50 U.S. states.
- >90% average agreement of test results.
- Network of laboratories prepared for new emerging diseases.
- Reagent distribution.

Special Thanks To

Social CDC Arbovirus Diagnostic & Reference Section

Roselyn Hochbien Janeen Laven Mara Miller Jaimie Robinson Brandy Russell

Rob Lanciotti

Barbara Johnson

Amy Lambert

Olga Kosoy

Jane Johnson

Amanda Panella

Jason Velez