HIV Case-Based Surveillance Systems

Regional Consultation on HIV Epidemiologic Information in Latin America and the Caribbean, Nov 7-9 2012

Irum Zaidi Division of Global HIV/AIDS Centers for Disease Control Prevention

Second Generation Surveillance Update: "Know Your Epidemic" (2012)

Second Generation Surveillance Update: "Know Your Epidemic" (2012)

Figure 1: Components of HIV second generation surveillance

WHO

recommends case surveillance as part of a comprehensive system of SGS

History of HIV/AIDS case surveillance

Pre-2004

Multiple case definitions for AIDS around the world (1984-98)

- Few HIV case definitions
- HIV case reporting was not a WHO recommendation; there were no guidelines

2004-2006

- WHO and CDC and others sought to:
 - Review and revise classification and staging
 - Consider revision of surveillance definitions to reflect HIV in need of ART
 - Harmonise surveillance & clinical definitions

History of HIV/AIDS case surveillance

2006: New WHO guidance published

- Standardised simplified HIV case definition based on lab testing
- Standard AIDS and Advanced HIV case definitions for surveillance
- Recommends HIV case reporting in children and adults

Uses of HIV Case Reporting Data

- To effectively monitor trends in prevalent HIV infection
- To characterize the affected populations
- To identify the number of persons in need of care and treatment
- To allocate care, treatment and prevention resources
- To target and evaluate intervention and prevention programmes
- To provide a context for M&E data

Comprehensive HIV Case-Based Surveillance system

- Reporting of all HIV infections (regardless of clinical stage)
 - Persons should be reported if they:
 - □ Are newly diagnosed regardless of clinical stage
 - □ Were previously diagnosed but not previously reported
 - Were previously diagnosed and reported at clinical stage 1 or 2 and progressed to stage 3 or 4

Follow case longitudinally to get status updates:

sentinel events, including death

Monitor HIV disease

Monitor HIV disease

Monitor HIV disease

Basic Elements of HIV Case Surveillance

Define what will be reported

- HIV infection (all stages)
- Advanced stage HIV disease (stages 3, 4)
- AIDS (stage 4)

Define which events should be reported

- Ist positive test
- Ist viral load
 - All viral loads (tracking cases)
- Ist CD4+ test
 - All CD4+ tests (tracking cases)
- ▶ Ist CD4+ < 200
- HIV exposure (children)

Information to collect on each case

- Demographic Characteristics
 Sex, age, town, race/ethnicity
- Date of HIV diagnosis
- Date of report
- Reporting source
- Transmission risk
- CD4 count/% and/or clinical stage
- Supplemental TB and virologic status

Monitoring the HIV epidemic

13

Considerations to include first 'HIV positive result' in the HIV case surveillance system.

- Why include it the first positive test is closer to when a person was infected with HIV
- HIV testing programs
 - Identify which models yield the most positive tests
 - VCT, outreach, PICT, ANC, TB, hospital
 - Start incorporating testing data that have the same person-level UI to the case surveillance data
 - In anonymous testing programs, pilot effective referral system...after someone tests positive obtain the name of the individual for referral and actively refer and confirm referral
 - Evaluate this system to identify any problems with the confidentiality and assess if duplicate testing decreases

Multiple Data Sources, One Case

High quality surveillance system

- Unique identifier name plus DOB, sex.....
- Standard operating procedures
- Standardized questions to obtain data on transmission risk
- Redundancy of reporting from multiple sites
- Training
 - Practical aspects of reporting
 - > Who reports, when do they report, how do they report
 - Soliciting transmission risk information
- Data analysis, use and dissemination
 - Critical to feedback to data to those contribute to the system

Types of Analysis from HIV Case Surveillance Data

Where and among what populations is the burden of the epidemic high? What behaviors are promoting new infections?

Figure 3. Annual transmission breakdowns of reported HIV/AIDS cases in China, 1985-2009

Where are new cases coming from?

Barbados: Annual trend of new HIV cases, 1984 – 2010

HIV Cases

Where are new infections coming from? What care and treatment services are needed?

Figure 6. Geographic distribution of cumulative reported HIV positives in China (at end of 2009)

What is the direction of the epidemic?

Figure 1. Annual reported HIV positives and AIDS cases in China, 1985-2009.

What is the immunological status of newly dx?

Barbados: Immunological classification of newly registered patients at the LRU in 2010

WHO HIV-associated immunological	CD4 (cells/ mm ³)	Sex		Total	
Classification		Male	Female	n	%
Severe	< 200	27	6	33	32.0
Advanced	200 - 349	15	7	22	21.4
Mild	350 - 499	12	6	18	17.5
None or not significant	≥ 500	13	13	26	25.2
No Classification	Not Known	3	I	4	3.9
Total		70 (68.0%)	33 (32.0%)	103	100.0

Source: Barbados HIV/AIDS Surveillance Report 2010

How many are infected, progressing to advanced disease and dying?

Reported HIV, AIDS and Related Deaths, Viet Nam 1993-2011

Advanced Analysis from HIV Case Surveillance Data

Are prevention programs working?

Estimated prevalence of persons age >13 years living with HIV, and number undiagnosed, 2006—United States

	Persons living with HIV	Persons living with undiagnosed HIV	Percent undiagnosed
Total	1,106,400	232,700	21.0%
MSM	532,000	124,900	23.5%
IDU (men)	131,500	19,000	14.5%
IDU (women)	73,100	10,000	13.7%
White	382,600	72,000	18.8%
Black	510,100	113,100	22.2%

Campsmith ML, Rhodes PH, Hall HI, Green TA Undiagnosed HIV prevalence among adults and adolescents in the Unites States at the end of 2006. J Acquir Immune Defic Syndr. 2010;53:619-624

Modeling undiagnosed infections

The extended back calculation (EBC) is a modeling method to estimate HIV infections and prevalence for previous years (including undiagnosed infections) based on probabilities derived from case surveillance data.

Campsmith ML, Rhodes PH, Hall HI, Green TA Undiagnosed HIV prevalence among adults and adolescents in the Unites States at the end of 2006. J Acquir Immune Defic Syndr. 2010;53:619-624 EPIDEMIOLOGY AND SOCIAL SCIENCE

Undiagnosed HIV Prevalence Among Adults and Adolescents in the United States at the End of 2006

Michael L. Campsmith, DDS, MPH, Philip H. Rhodes, PhD, H. Irene Hall, PhD, and Timothy A. Green, PhD

Objectives: To describe adults/adolescents (age 13 years and older) living with undiagnosed HIV infection in the United States at the end of 2006.

Methods: HIV prevalence and percentage undiagnosed were estimated from cumulative HIV incidence using an extended backcalculation model (using both HIV and AIDS data, the time of first diagnosis with HIV, and disease severity at diagnosis) and estimated cumulative deaths.

Results: An estimated 1,106,400 adults/adolescents (95% confidence interval = 1,056,400-1,156,400) were living with HIV in the United States at the end of 2006; overall, 21.0% (232,700; 95%)

INTRODUCTION

Current, accurate, and timely public health surveillance data on HIV prevalence are needed to guide decisions on planning for disease prevention activities, program evaluation, and resource allocation at the local, state, and national levels.¹⁻³ However, the overall prevalence of persons living with HIV cannot be directly observed, as a percentage of persons infected with HIV has not yet been tested, diagnosed, and reported to local disease surveillance programs. Having a better understanding of the characteristics of the undiagnosed population (eg, by race/ethnicity, sex, age, and risk) is important for focusing HIV testing and prevention initiatives and to measure progress in decreasing the size of the

Undiagnosed prevalence

Benefits of modeled prevalence

Provide more reliable data for the:

- Planning and prioritization of HIV prevention and intervention activities that aim to identify persons with undiagnosed HIV infection and link them to medical care and prevention services
- Evaluation of the effectiveness of HIV prevention and intervention programs
- Determination of needs for HIV-related care, treatment and ancillary services
- Allocation of limited resources at the local, regional and national levels

Model inputs

Modeling inputs from case surveillance data:

- The date of HIV diagnosis, AIDS diagnosis and death
- Stratification variables (e.g. gender, transmission category, etc)
- Concurrent diagnosis (HIV and AIDS diagnosed in the same year)
- HIV testing hazard*

Modeling inputs from the literature:

- Assumptions about the distribution of the period between infection and the diagnosis of AIDS
- AIDS diagnosis hazard**

* The probability of being diagnosed with HIV in year $t \mid$ Infected in year *i* but not diagnosed with HIV at the start of year *t*

** The probability of being diagnosed with AIDS in year t | Infected in year i but not diagnosed with HIV at the start of year t and not diagnosed with AIDS at year t

Adjustments for modeling

Case surveillance data must be adjusted for:

- Reporting delay
 - Modeled based on recent historical reporting delay data
- Incomplete reporting
 - Data imputed from recent historical data of reporting areas based on demographic characteristics
- Missing transmission category
 - Probability for each transmission category imputed from for each report based on demographic characteristics
 Recent historical data or special survey

HIV prevalence in the US 1977-2005 (diagnosed and undiagnosed)

Campsmith ML, Rhodes PH, Hall HI, Green TA Undiagnosed HIV prevalence among adults and adolescents in the Unites States at the end of 2006. *J Acquir Immune Defic Syndr.* 2010;53:619-624

How many are infected, progressing to advanced disease and dying? What care and treatment services are needed?

Vital Signs: HIV Prevention Through Care and Treatment — United States. MMWR. December 2, 2011 / 60(47);1618-1623

Thank You

Working Together to Plan, Implement, and Use HIV Surveillance Systems

Key variables

Incorporating 1st HIV test

Where do positives come from?

- PMTCT
- VCT
- **TB**