Knowledge gaps that make it a challenge to provide evidence-based vector control recommendations to AMI partner countries

Audrey Lenhart, PhD MPH

Entomóloga Investigadora División de Enfermedades Parasíticas y la Malaria

> Reunión Anual de AMI Rio de Janeiro, Brasil 26 de marzo de 2015

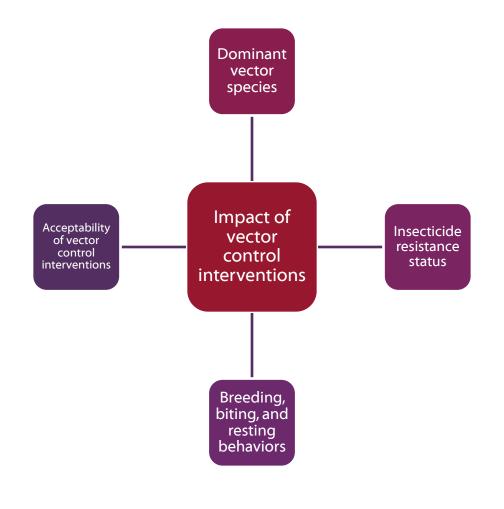
Center for Global Health

Malaria vector control tools

Most common:

- Insecticide treated bednets (preferably LLINs)
- Indoor residual spraying (IRS)
- Larval source management

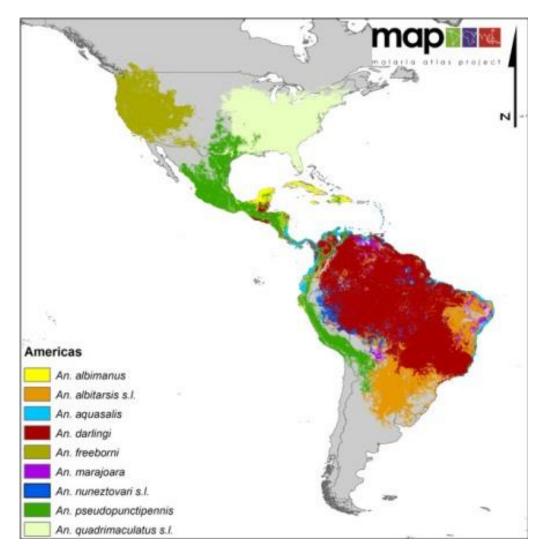
Less common:


- Eave and window screens/curtains
- Spatial repellents
- Personal repellents
- Insecticide-treated clothing

Bottom line:

There are limited tools available for malaria vector control.

In the Americas, which tools are the most appropriate in which situations?


Determinants of vector control impact

Knowledge gaps

- **Dominant vector species**
- **Breeding, biting and resting behaviors**
- Insecticide resistance status
- Acceptability of vector control interventions
- Impact of vector control interventions

Dominant malaria vector species in the Americas

From Sinka et al. (2012) A global map of dominant malaria vectors. Parasites & Vectors, 5:69

Vector incrimination

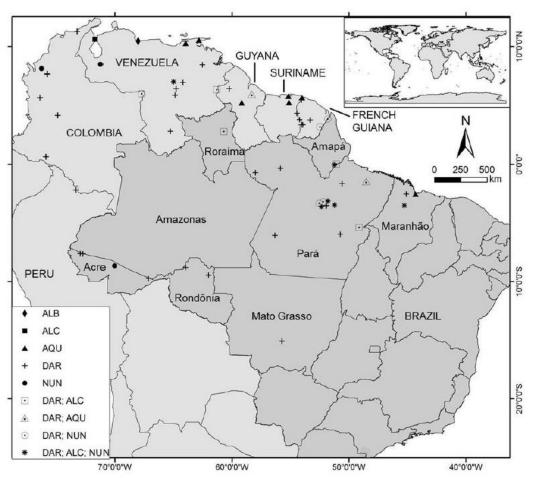


Figure 3. South American localities where malaria vectors have been incriminated by various methods since the year 2000. Species codes: ALB, Anopheles albimanus; ALC, Albitarsis Complex; AQU, An. aquasalis; DAR, An. darlingi; NUN, An. nuneztovari. The darker grey area is Brazil.

Jan E. Conn, Martha L. Quiñones and Marinete M. Póvoa. Chapter 5: Phylogeography, Vectors and Transmission in Latin America, *in* <u>Anopheles mosquitoes - New insights into malaria vectors</u>. 2013, InTech <u>http://dx.doi.org/10.5772/55217</u>

Knowledge gaps: Dominant vector species

Diversity of anophelines and species complexes

- Routine surveillance of species composition and relative abundance in malaria transmission and high risk areas
- Analysis of *Plasmodium* infection (particularly sporozoites) in mosquitoes
- **Lack of fine scale data, particularly in remote areas**
- To what degree do secondary vectors increase in importance when primary vectors are well-controlled?

Summary of malaria vector behavior in the Americas

Table 6 Adult feeding and resting behaviour

Species	Source	Feeding habit		Biting habit		Biting time				Pre-feeding resting habit		Post-feeding resting habit	
		Anthro- pophilic	Zoo- philic	Exo- phagic	Endo- phagic	Day	Dusk	Night	Dawn	Exo- philic	Endo- philic	Exo- philic	Endo- philic
An. albimanus	Summary	2	2	9	2		7	9	0			1	3
An. albimanus	TAG	•	•	•	•		•	•		•		•	
An. albitarsis	Summary	2	2	4	3		7	3				2	
An. albitarsis	TAG	•	•	•	•		٠	•		•		•	0
An. aquasalis	Summary	1	1	2	2	1	2	1		1		1	
An. aquasalis	TAG	•	•	•	•		•	•		•		•	
An. darlingi	Summary	12		9	6		15	23	3	1		2	
An. darlingi	TAG	•	0	•	•		•	•	•	•		•	
An. freeborni	Summary	1	1										
An. freeborni	TAG	•	٠	•	•		•	•	•	•		•	
An. marajoara	Summary	2	2	3			4	1		1		2	
An. marajoara	TAG	٠	•	•	•		٠	•		•		•	
An. nuneztovari	Summary	2	4	5	1		3	1		1		2	
An. nuneztovari	TAG	٠	٠	•	•		٠	•	•	•		•	
An. pseudopunctipennis	Summary	3	2	3				1			1	1	2
An. pseudopunctipennis	TAG	•	•	•	•			•		•		•	•
An. quadrimaculatus	Summary		3	Þ			1		1	2		2	
An. quadrimaculatus	TAG	•	•	•		0	•	•	•	•		•	

TAG: Rubio-Palis & Manguin (unpub. obs., 2009, 2010), \bullet = typical, \circ = examples exist. Numbers indicate the number of studies that found adults under each listed circumstance. *Anopheles albitarsis* refers to the *An. albitarsis* complex, which includes *An. albitarsis, An. albitarsis* sp. B, sp. E and *An. deaneorum. Anopheles marajoara* is listed separately.

From Sinka et al. (2010) The dominant *Anopheles* vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. *Parasites & Vectors*, 3:72

Knowledge gaps: Breeding, biting and resting behaviors

- Data are highly focal/contextual; the same species can display distinct behaviors in distinct places
- Where multiple vector species overlap, what are the seasonal differences in species behavior that could impact vector control efficacy?
- Where (if anywhere) could larval source management be a viable vector control tool?
 - Few, fixed, findable

Knowledge gaps: Insecticide resistance

Resistance frequency and intensity

- Resistance surveillance is often sporadic
- Little or no information on resistance intensity
 - A vector that is resistant to only the diagnostic dose of insecticide vs. a vector that is resistant to 10X the diagnostic dose of insecticide have different control implications

Very limited data on resistance mechanisms

 Necessary to make sound decisions regarding vector control because of cross-resistance and shared metabolic or molecular mechanisms

Insecticide resistance surveillance as an opportunity to address multiple knowledge gaps

When a routine and systematic resistance monitoring system is in place, multiple types of information about vector populations can be collected simultaneously

- Presence of malaria vectors and species composition
- Spatial and seasonal distribution of vectors
- Relative abundance of malaria vector species
- Feeding behavior: which malaria vector species are biting humans and at what level of intensity, including endophagy and exophagy

Knowledge gaps: Acceptability of vector control interventions

A vector control strategy may be highly efficient at killing mosquitoes, but unless the people like it and use it, it will never be effective

 More research is needed regarding the knowledge, attitudes, and practices of people and the underlying behaviors and perceptions that result in the adoption and maintenance of vector control tools/strategies

What information do we need to make evidence-based vector control decisions?

Examples: Peru and Guatemala

Loreto, Peru

- Previous research by multiple groups has investigated the knowledge attitudes, and practices of local populations regarding bednets
- Evidence is lacking regarding which vector control tool(s) are likely to provide the greatest control efficacy
- No time to conduct research—solutions are needed <u>now</u>

Guatemala

A robust evidence base regarding LLINs is being developed, but how does that get translated into policy recommendations?

Priorities = operational challenges

Characterization of insecticide resistance mechanisms to support intelligent selection of insecticides

- New research suggests that resistance mechanisms are highly specific
- Resistance management plans can prevent or delay the development of resistance
- Understanding vector and human behavior to optimize the application of vector control interventions
 - Where/when do vectors bite/rest? Which tools work best under which circumstances?

Muchas gracias por su atencion

Muito obrigada!

