QUALITY CONTROL OF WHO PREQUALIFIED VACCINES

Agence française de sécurité sanitaire des produits de santé

F.FUCHS

PAHO Meeting - Rio 28-30 November 2006

NCLs functioning

1- Example of a NCL in a producing country (France)

- Routine Functioning of the NCL lab
- Lot release activity for vaccines

2- QC of WHO prequalified vaccines (PQ)

- The upstream QC testing before PQ of vaccines
- The monitoring of PQ vaccines
 - Testing constraints
 - QA issues

Scientific & technical Experience

WHO critical functions for vaccine supply

	UN Supply	Purchase	Producing
6 Critical Functions		by country	country
M.Authorization		X	X
Pharmacovigilance	X	X	X
Lot Release		X	X
Lab access			X
GMPs Inspection			X
Clinical evaluation			X

QC testing by NCL: needs & requirements

- Absolute need for the NCL to access the product specific MA file (should be involved in the licensing phase) + any MA variation
- Need for adequate lab facilities + trained staff + Quality manager
- Need for QC testing plan (nature & frequency of tests) + written SOP's + written criteria for decision making: QC checklist, sampling, methods, specifications
- Absolute need to access inspection reports, complaints (e.g stability)
- Traceability of NCL results: raw data analysis, control charts and tools to monitor consistency
- In addition: review of LSP, checking of labelling and packaging

NCL: access to laboratories

- Whatever the NCL status is: need for quality assurance system
- Standardised & validated assays => to allow relevant interpretation of QC test results
- Equipments: documentation in place, maintenance, calibration
- Qualification & expertise of staff, auditing systems
- Validation of methods, use of standards and reference reagents; trend analysis of results
- Participation in collaborative studies, performance studies

Applicable to QC testing of PQ vaccines

NCL QA Documentation to run vaccine testing

Technical Operating instructions

e.g titration of MMR vaccines

- •Domain
- Responsibilities
- Facilities
- Materials (e.g plates)
- Equipments
- •Reagents (commercial & in house)
- Titration procedure description
- Reading
- Calculation & interpretation
- Saving and archiving

- Qualification of autoclaves
- Temperature monitoring
- (e.g incubators, refrigerators)
- Pipettes checking gravimetric method
- Checking of scales
- Checking of ODs readers
- Checking of laminar flow equipments
- Checking of pH meter

Calculation softwares

- Commercial softwares = considered as validated
- QA forms (life cycle monitoring)
- Password to data access

In house softwares

- To select a secured language (beware Excel), secured access (password)
- Full development & validation procedures
- Periodic checking with a set of raw data

Method validation

Validation protocol (e.g 30 lots/assays data)

- Accuracy, Precision (repeteability & intermediate precision), Linearity
- Specificity, Sensibility, Detection level & Limit of quantification
- Statistical process control (SPC):
 - Control charts
 - Trend analysis
 - Comparison manufacturer & NCL data; in vitro/in vivo correlation

Results Validity and conformity criteria

- Need to explain choice criteria (e.g CPE positive/negative).
- To describe statistical calculation method
 - Quantitative methods: Parallel line model, slope-ratio model
 - > Qualitative methods: Probits, angular
- Biological & statistical validity criteria
 - Monitoring of a reference material by control charts
 - Use of primary (IS) or secondary standards (BRPs)
 - Action when invalid assays, investigation
 - Retesting procedures
- Conformity criteria & rules for combinations

Analysis report

Should mention:

- Request (who, what, deadlines, etc..)
- Product Characteristics
- Date(s) of assay(s)
- Method
- Result (& precision)
- Total number of assays to issue a result
- Conformity / specifications.
- Signature by the QC lab responsible person

QC of WHO prequalified vaccines: specificities

Agence française de sécurité sanitaire des produits de santé

QC of Prequalified vaccines: a formal WHO/NCL agreement

- Need for a WHO/NCL agreement (yearly) : absolute confidentiality
- No disclosure of test results, of manufaturer concerned
- Impossible to ask a NCL to test PQ vaccines of a manufacturer already tested/ released by the NCL: independence
- List of generic vaccines known in advance (e.g DTwP, Hib, OPV etc..) to allow NCL to manage and organise
- Easy to run usual QC test methods for classical vaccines (DTwP, OPV, MMR): potency, virus titration, specific toxicity,pyrogens, LAL etc..)
 - No specific reagents/ Only skilled staff needed
- Need for detailed manufacturer test method & specific reagents if needed

e.g Afssaps control activity

20 valencies, >50 different vaccines, >200 trade names released PQ vaccines selected amongst these vaccines

- Viral vaccines live & inactivated
 - OPV m & t, IPV, Influenza, Hep A, HepB, MMR, Yellow fever, Varicella
- Bacterial vaccines live, inactivated, polysaccharide (± conjugated)
 - BCG, BCG for immunotherapy
 - Diphtheria, Tetanus, aPertussis, wPertussis, Cholera
 - Hib, Pneumococcal, Meningococcal, Typhoid, Leptospirosis
- Combined vaccines
 - Tri, tetra, penta, hexavalent vaccines

Afssaps laboratory experience for WHO expertise

- All vaccines
 - In vitro potency tests e.g ELISAs for viral and bacterial antigens
 - Pyrogens
 - Sterility
 - Endotoxins
 - Degree of adsorption, pH, aluminium, phenol, thiomersal, adjuvant
 - Appearance, residual moisture, volume
 - Stability testing

Afssaps laboratory experience for PQ vaccines

- > 150 DIFFERENT ASSAYS ROUTINELY PERFORMED
- Viral vaccines
 - Cell culture titrations (microplates, PFU, pock forming unit assay)
 - SRD assay
 - [Neurovirulence (OPV)]
- Bacterial vaccines
 - Culture (viable count), mycobacteria
 - In vivo potency tests (D, T, wP, aP, hep B, hep A, IPV, rabies, tuberculins)
 - In vivo safety tests (WHO), toxicity tests (D, T, wP, aP, HST)
 - In vitro toxicity tests (CHO cells)
 - Excessive dermal reactivity
 - Physico chemical methods: polysaccharide testing, HPLC, DIONEX, anthrone, nephelemetry, molecular sizing

QC testing of PQ vaccines do we have limitations?

- More complex for new sophisticated vaccine combinations (DTaP/Hib/IPV/HepB or polysaccharide vaccines)
 - Need for « product specific » reagents and methods = > ownership of manufacturers (patented: e.g Hep B in vitro potency)
 - Important to know technical details: e.g specific diluent for adjuvanted vaccines
 - Need for appropriate validation: strict application of NCL in house SOP's for related products not possible (e.g free PS, molecular size)
 - According to QA systems impossible to use reagents from other manufacturers/sources= difficulty
 - Comparability with manufacturers results could be questionable
 - Could raise concerns on opposability of results in case of discrepancy (lack of validation)

Potency test of Hepatitis B vaccines & Standard for the immunogenicity and in vitro test. afssaps

- Have accepted to extend deadlines for supplying NCLs
- European bodies & WHO to look for possible alternatives
- Ultimate goal is to establish a common assay used for all rDNA HBV vaccines
- Various attempts to develop methods: manufacturers have worked on their own, EDQM + F + UK + B together
- For the time being no consensus on the stategy & technical approach

Potency test of Hepatitis B vaccines & Standard for the immunogenicity and in vitro test.

Manufacturers approach

- MSD
 - Have bought (patented) the Abbott monoclonal antibody used & developed their in house IVRP assay
 - Legal impossibility for Pharmacopoeias to recommend this method
- GSK
 - Have developed an in house assay potential candidate as common assay using in house reagents (inhibition test)
 - Recently have changed their strategy and have patented their method
 - NCLs would be free to use use it without financial obligations (fees & licensing agreement for manufacturers)

Potency test of Hepatitis B vaccines : Where we are

- Negociations ongoing with GSK
 - GSK patent would not impair lot release on the European market but however would impair lot release of European NCLS for exports markets & WHO PQ testing
 - It is likely that non EU manufacturers will not license the GSK method and will try to establish their own method
- => major difficulty for NCLs to have to run various product specific Hep B methods
- => European bodies and NCLs to look for a non patented method (Cuban?)

Technical challenges for testing some PQ combined vaccines

- Manufacturers should have identified potential interactions leading either to diminish or increase response to individual components compared to individual components alone
 - in the appropriate animal model supposed to mimik response in human
 - \Rightarrow Need for appropriate design of QC strategy
 - ⇒ Need for appropriate QC tests in vivo and in vitro (potency): relevant studies in animal
 - ⇒Could be difficult to an NCL without the background to test and interprete
 - ⇒ Need for Pharmacopoeia requirements and reference preparations

DESIGN OF IN VIVO ASSAYS FOR COMBOS

 It is difficult to transpose in vivo potency assays for single component to the combos: response to each antigen should be assessed: quantitative & qualitative (antibody class, avidity, affinity, halflife, neutralising capacity etc..)

Case by case:

- Appropriate animal species
- Dose-range
- Route & location of injection
- Volumes of injection
- Dilutions (buffers, procedure)
- Test preparation and a standard should be compared

EXAMPLES OF PROBLEMS RAISED BY NCLs

• DTaP+ Hib

- Do not behave in QC tests as expected from D, T,wP, Hib separately
- D, T, wP enhances antibody response to Hib
- Probably due to adjuvant effect of wP + a mimicking effect

Case of PRP tetanus toxoid conjugate in combos

- Enhancement of tetanus antitoxin response
- Tetanus toxoid content of conjugate is comparable with the quantity present in D, T,wP
- Question of possible excessive dose of tetanus toxoid if several conjugate vaccines are used

CONCLUSION

- NCL testing of prequalified vaccines requires:
 - Skilled staff & appropriate facilities
 - QA system in place for vaccine testing (lot release)
- Increasing the number of WHO PQ vaccines = New challenges for testing NCLs
 - Rigourous scientific & technical expertise
 - Experience in R&D for vaccines QC
 - Minimum background knowledge on combos
 - To give more guidance to WHO on the scientific & technical issues related to the new PQ vaccines compared to the past