Cardiosvascular Disease Prevention through Dietary Salt Reduction

First PAHO Expert Group Meeting

Washington, D.C.

9-10 September 2009

Monitoring and surveillance of salt intake in populations

Francesco P Cappuccio MD MSc FRCP FFPH FAHA

World Health Organization Collaborating Centre for Nutrition

University of Warwick Warwick Medical School Clinical Sciences Research Institute Coventry, UK

Definitions

- Presentation refers to sodium intake as either mass or mmol of sodium, or mass of sodium chloride (salt) (1g sodium chloride = 17.1 mmol of sodium or 393.4 mg of sodium) 1 mmol = 23 mg of sodium
- For the purpose of this presentation the word **salt** is used to refer to **sodium** and **sodium chloride intake** (and vice versa)
- The term **limitation of dietary salt intake** implies the reduction of total sodium intake from all dietary sources including, for example, additives such as monosodium glutamate and preservatives.

British Adult Surveys

C.S.R.I.

1986-1987 & 2000-2001

Source: Henderson et al. 2003, p136

Salt intake has increased in the last 20 years (10 to 11g ♂ and 7.5 to 8.5g ♀)

Bars: standard error Sodium: 1 mmol = 23 mg

* mean, standard error and n are weighted to compensate for the differential probabilities of selection and non-response

[†] lower cut-off was 16 years in the first survey, and 19 years in the second

Salt intake in UK children

- Methodological problems severe
- Data limited or absent in many countries
- Higher salt intake in boys
- Higher salt intake at older ages

Sources of sodium in the diet

Source	Proportion	Estimated amount [†]
Processed and restaurant food	77%	~131
Naturally occurring	12%	~20
Added by consumer (discretionary)		
while eating	6%	~10
in home cooking	5%	~9

 $^{^{\}dagger}$ calculated on an estimated intake of 170 mmol Na per day (~10 g salt per day) and expressed as mmol/day

European Salt Action Network

Membership (Ljubljana, March 2008)

Implementation framework at National level

C.S.R.I.

European Salt Action Network

Monitoring and evaluation

ESAN will target three main areas:

- Population salt intake progress towards recommended national or WHO targets
 - Urinary sodium excretion ('gold standard' to estimate salt intake)
 - Dietary surveys
 - Market surveys
 - Calculated sodium content of foods
- Reformulation progress towards benchmarks
 - Definition of benchmarks and food categories
 - Bread, meat products, cheeses, ready meals, soups, breakfast cereals, fish products, crisps & savoury snacks, sauces condiments & Spices, potatoes products, catering meals, restaurant meals
 - Minimum of 16% over 4 years or 'best of class' principle
 - Monitoring of salt content of foods
 - Construction of foods databank of salt content
- Effectiveness of actions to raise public awareness
 - Measuring awareness of consumers (Consumers' Attitude Surveys)

Methods to estimate salt intake

C.S.R.I

- Duplicate diets
- Dietary surveys
 - Food frequency
 - 7-day weighed records
 - Food diary
 - 24 hour recall
- Urinary collection
 - Spot (casual)
 - Overnight
 - Timed
 - 24 hour
- Dietary surveys underestimate total salt intake
- The higher the intake, the greater the error

24 hour urine collections

- Considered <u>"gold standard"</u> method to measure sodium intake
- Will capture >90% of sodium ingested (present in NaCl and other Na salts)
- High participant burden
- Problems of completeness supervise beginning and end of collection
- PABA method to check completeness not established for large-scale population surveys
- Urinary creatinine can be used
- Also 'ideal' for monitoring total iodine intake

Feasibility - Experience on 24h urine collections

C.S.R.I

Study	Country	n	Sex	Age (yrs)	Average UNa (mmol/24h)	Yield (%)		
Clinic-based studies								
St George's (1989) St George's (1995)	UK UK	20 47	3° 9 3° 9	42-72 60-78	162 127	100 100		
Population-based studies								
Marano '83 (1983)	Italy	78 45	1 9	11	156 133	100		
Olivetti Study (1976)	Italy	188	3	25-56	177	78		
W.H.S.S. (1992)	UK	692 882		40-59	186 / 188 / 174 140 / 158 / 143	66		
IMMIDIET (2003)	UK Belgium Italy	526 538 540	7 P 7 P	30-60	143 162 192	100 ~40 ~60		
Kumasi (2002)	Ghana	1,013	♂♀(rural & S-urban)	45-75	101	98		

24h urine collections in Ashanti, Ghana

C.S.R.I.

Practicalities

C.S.R.I

- Field worker trained centrally
 - Participant attends screening (or field worker visits participant)
 - Participant voids bladder then
 - Field worker takes the time (START)
 - Duly labelled plastic bottle handed out
 - Participant instructed to collect ALL urine passed throughout day and night
 - Participant asked to return following morning (or field worker revisits participant)
 - Participant voids bladder then
 - Field worker takes the time (FINISH)
 - Field worker enquires about lost or missed aliquots
 - Bottle collected and sent to the lab

Sources of Salt in Ashanti

				Copl
World Health Organization Illaborating Centre for Nutrition		Rural N=481	Semi-urban N=532	Odds Ratio (95% CI)
	Koobi	60%	42%	2.03 (1.38 to 2.99) ***
	Kako	26%	29%	0.87 (0.40 to 1.96)
	Salted pig's feet	16%	32%	0.40 (0.15 to 1.02)
SALTED DEEF	Salted beef	9%	23%	0.34 (0.13 to 0.86)*
Maduk culu	Cubes	52%	56%	0.85 (0.47 to 1.56)
	Added in cooking	99%	97%	1.83 (0.90 to 3.72)
	Added at table	59%	45%	1.75 (1.18 to 2.61)**

Kerry SM et al. Ethn Dis 2005;15:33-9

"Timed" urines

C.S.R.I

- Less participant burden than 24 hour collections
- More variable at individual level but may give good estimate of group mean
- <u>Desirable alternative</u> for monitoring program effects over time (validation necessary)
- Need baseline 24 hour urine assays to compare between populations or time points
- Role of urinary creatinine
- Should learn from monitoring program for iodisation
- Could be used for 'effective' monitoring of iodine (ideally in adult populations)

Practicalities

- Field worker trained centrally
 - On the morning of screening participant instructed
 - to void the bladder in the morning at home
 - to record the time (START)
 - to drink one glass of water
 - to refrain from passing urine until screening
 - At screening
 - to void bladder completely
 - to record the time (FINISH)
 - Collection time (FINISH START) in min (usually 4-5h + 1-2h)
 - Extrapolated to 24h (validation studies vs 24h needed)

Spot urines

- Less participant burden than 24 hour collections
- Highly variable at individual level but may give estimate of group mean
- <u>Less desirable</u> for monitoring program effects over time
- Highly dependent on hydration, volume, residual bladder volume
- Currently used for monitoring iodine (mainly children and women of childbearing age)

Overnight collections

- Less participant burden than 24 hour collections
- May give biased estimates of sodium excretion
 - (greater % excretion overnight in hypertensive individuals...)
- <u>Undesirable</u> for monitoring program effects over time

Measurement of sodium intake

Sodium intake highly variable within-individuals from day to day Misclassification of individual intake and increase in variance of group (mean unbiased)

Sample size

- Random sample of ~100 people (minimum) to give estimate of 24 hour urinary sodium excretion with 95%Cl around the mean of +12 mmol/day
- Sample of ~200 to give separate estimates for men and women (multiples for age groups)
- To consider attrition rate
- Modest reduction in 95%CI with 2x24 hour urine collections per person
- Much larger samples may be required for more precise estimates

Example

C.S.R.I.

 $(\alpha = 0.05; \beta = 0.80)$

Urinary sodium excretion in Slovenia (2007)

Urinary sodium excretion in Slovenia (2007)

C.S.R.I.

Ribič CH et al. Public Health Nutrition 2009 (in press)

Relationship between 24h urinary iodine and 24h urinary sodium in 12 villages in Ashanti.

Cappuccio FP et al. (unpublished)

Prevalence of Iodine Deficiency at baseline (left) and 6 months (right) by locality and gender

Normal (Iodine sufficient): 24 hr urinary iodine concentration ≥ 100µg/L

Mild Iodine Deficient: 50µg/L ≤ 24 hr urinary iodine concentration < 100µg/L

Moderate Iodine Deficient: 20µg/L ≤ 24 hr urinary iodine concentration < 50µg/L

Severe Iodine Deficient: 24 hr urinary iodine concentration < 20µg/L

Cappuccio FP et al. (unpublished)

Summary

C.S.R.I

Measurement

- Dietary approaches (underestimate intake)
- Urinary approaches ('gold standard'): gets >90% of ingested sodium in absolute amount

Different issues to evaluate group means and individual means

- 'Timed' urines may be effective for estimating population changes (absolute - knowing baseline amount - or proportional)
- 24 hour urines need to get at individuals' levels but may not be good estimate of 'usual' level as it varies from day-to-day

Feasibility and Costs

- Highly feasible in different contexts
- Estimate costs in the region of €2,500 €3,500 per centre per year plus set up costs (assuming minimum samples of n=400 per centre per year)

Include minimum data-sets

 Age, height, weight, waist circumference, blood pressure, heart rate, hypertension status, drug therapy, (iodine measurement).

