

Gestational Diabetes:

The importance of making the diagnosis for mother and child.

Sara J Meltzer McGill University Lima, Peru

September 8th, 2015

Objectives of the Presentation

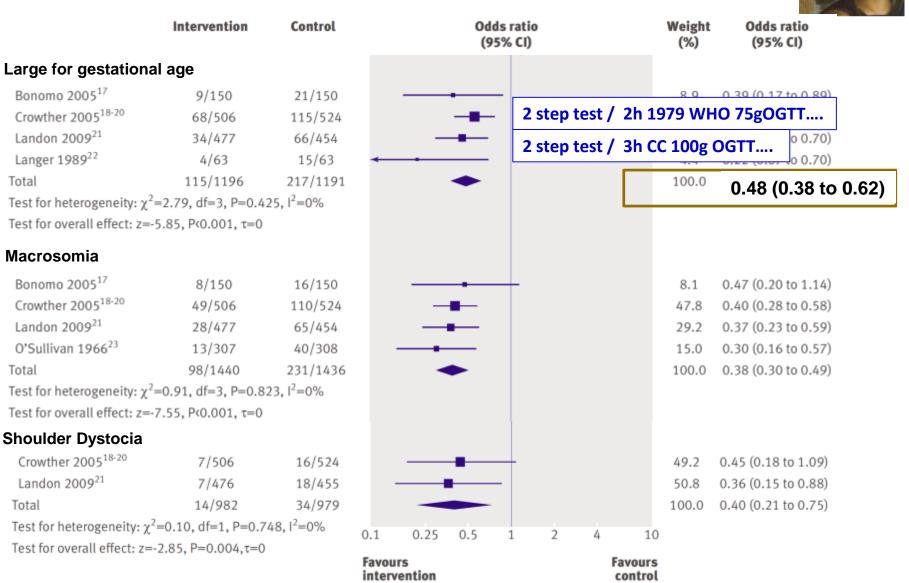
Understand the controversies surrounding the diagnosis of GDM comparing 100g/75g criteria

Understand the short and long-term risks for mothers

Understand the short and long-term risks for the offspring...

Why Diagnose and Treat GDM?

Maternal concerns:


Fetal / Offspring concerns:

- Preterm delivery
- Traumatic delivery due to macrosomia
- Caesarian section risk
- Pre-eclampsia risk increased
- Future T2DM and CV risks increased

- Macrosomia
- Shoulder dystocia and nerve injury
- > Hyperbilirubinemia
- Neonatal hypoglycemia
- Offspring obesity (?)
- Offspring diabetes (?)

Benefits of Treatment of GDM

Horvath K et al. BMJ 2010;340:c1935

Bonomo 200517

Landon 2009²¹

Langer 1989²²

Macrosomia

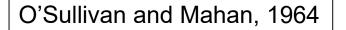
Bonomo 200517

Landon 2009²¹

Landon 2009²¹

Total

Total

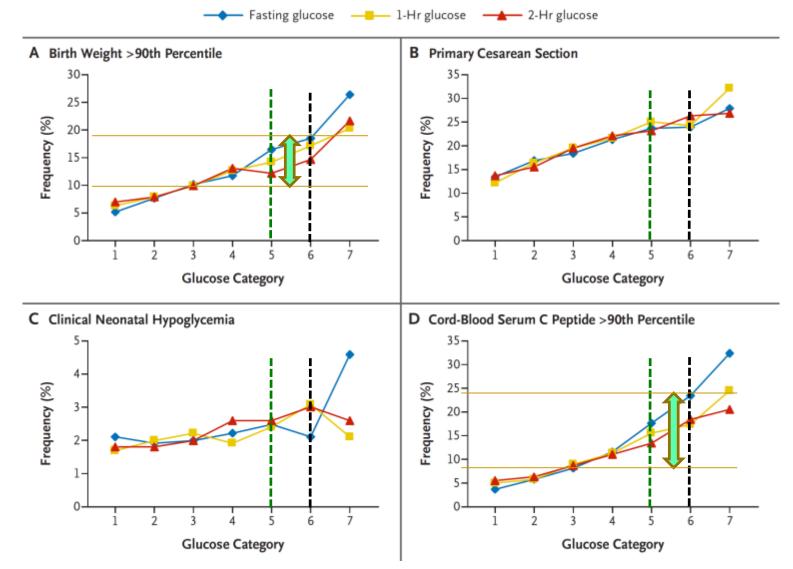

Total

O'Sullivan & Mahan (1964) original diagnostic criteria defining GDM

Original normative data from 752 women in NY:

- Threshold values were 2 SD above the mean using whole blood glucose
- Reapplied thresholds retrospectively to a different group of 1013 subjects tested in pregnancy & followed for 5 - 10 years PP
- Diabetes developed over 7 8 years in 22 % (17 women) in whom 2 glucose values were ≥ 2SD above the mean.
- Criteria were accepted as <u>assessing risk for future</u> <u>maternal diabetes</u>

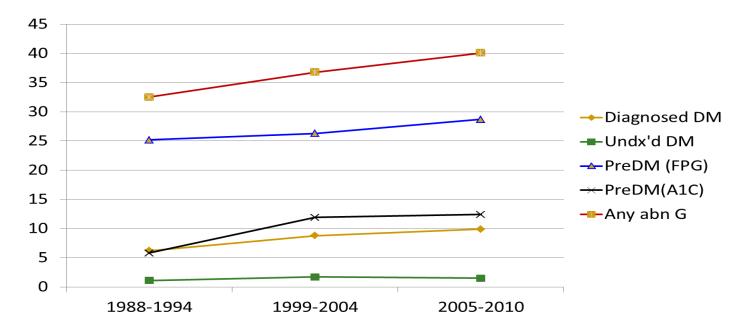
An Overview of some of the different diagnostic criteria for GDM



Plasma glucose	NDDG 3h 100g OGTT 1979	Carpenter & Coustan 3h 100g OGTT	WHO/ IADPSG 75g OGTT	WHO 1999 75g OGTT
Fasting	≥ 5.8 (105)	≥ 5.3 (95)	≥ 5.1 (92)	≥ 6.1 (110)
1h	≥ 10.6 (190)	≥ 10.0 (180)	≥ 10.0 (180)	-
2h	≥ 9.2 (165)	≥ 8.6 (155)	≥ 8.5 (153)	≥ 7.8 (140)
3h	≥ 8.0 (145)	≥ 7.8 (140)	N/A	
Number of abnormal values needed for diagnosis	≥ 2 O'Sullivan & Mahan numbers converted to plasma glucose	≥ 2 Don Coustan & Marshall Carpenter recalculated more precisely the	≥ 1 Based on HAPO OR of 1.75	≥ 1 Based on consensus
Acknowledged that values also indicated fetal and maternal risks in pregnancy, not only that of future maternal diabetes.		O'Sullivan & Mahan numbers and did not round them		

Values are presented in mmol/l. NDDG: National Diabetes Data Group; OGTT: oral glucose tolerance test; IADPSG: The International Association of Diabetes and Pregnancy Study Groups.

HAPO: Incidence of Adverse Outcomes for Glucose Categories (OR 1.75 or 2.0)



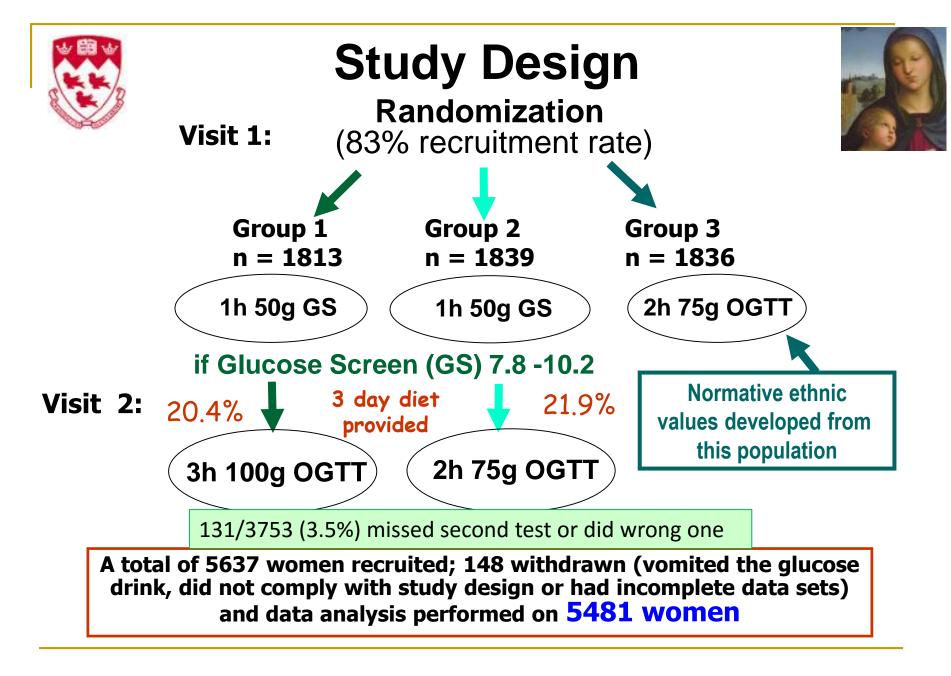
Metzger BE, et al. HAPO. *NEJM* 2008;358(19):1991-2002.

DM 2 is increasing in the general population – why not in pregnancy?

 SEARCH for Diabetes Study indicated a 30.5% (95% Cl, 17.3%-45.1%) overall increase in type 2 diabetes between 2000 and 2009 in US in children and adolescents.

Ann Intern Med. 2014;160(8):517-525. doi:10.7326/M13-2411

McGill GDM Diagnosis Study –


a prospective randomized controlled trial involving 5481 multiethnic, pregnant women in Montréal using a 75g vs 100 g OGTT

S. Meltzer, J. Snyder, L. Morin, M. Nudi, MSc

- Comparison of NDDG criteria for diagnosis and outcome with Canadian criteria using a 75g 2hOGTT <u>either with or</u> <u>without glucose screen</u>
- Canadian values of interest because they are virtually equivalent to an OR of 2.0 from HAPO study

Use of McGill trial to assess impact on a multiethnic, North America population to assess prevalence and potential outcomes

October 2009

Evaluation of cost of screening methods between 1 and 2 steps

JIII

Cost components	GR1 50gGS +100gGTT	GR2 50gGS + 75gGTT	GR3 Only 75gGTT
Direct costs (Drink, blood test costs-\$CAN)	21.77	20.16	36.89
Mean time in clinic (hrs)	3.48	3.24	3.79
Transportation costs	14.66	15.32	11.92
Time costs	55.18	53.56	59.57
Direct + Indirect costs (\$CAN)			
per women sc <u>reened</u>	91.61	89.03	108.38
Least expensive is GS (Dx 10.3) + 75g GTT if needed			
Average cost per case diagnosed	1145.13	1112.88	1354.75
Avg. cost per South Asian womanscreenedGDM diagnostic rate = 24%	95.87	105.24	104.15
Meltzer et al, BJOG 2010	Except for highest risk group		

Prevalence (%) of GDM and IGT

ADA CC 100 g 3h test (G1) vs IADPSG 75g 2h test (GR 2&3)

Study Group, (n=)	GDM by GS	GDM by GTT	Total GDM	IGT by GTT	GDM and IGT
CC 100g (1812)	2.2	3.9	6.1	5.2	11.3
GR2 (1839)	2.6	2.6*	5.2	5.0	10.2
GR3 (1838)	N/A	5.1	5.1	6.0	11.1

* Difference with GR1 gold standard is significant (p<0.05)

The 75 g GTT IADSPG criteria with or without GS give similar diagnostic rates of GDM/GIGT compared to ADA CC 100g GTT criteria (2014 ACOG)

Less time for the woman; easier test to tolerate

Odds Ratios of Outcomes by group vs NDDG

Corrected for age, weight, BMI, ethnicity

Comparison	OR for a	ll women	OR for normal women	
parameter	Group 2	Group 3	Group 2	Group 3
Unplanned C/S	1.43	1.35	1.35	1.32
	[1.04-1.89]	[1.05-1.80]	[0.99-1.85]	[0.97 -1.81]
Pre-eclampsia	1.15	1.33	1.32	1.53
	[0.76–1.74]	[0.89-1.97]	[0.84-2.05]	[1.00-2.35]
Neonatal hypoglycemia (<2.2mmol/L)	1.40 [0.98-2.17]	1.21 [0.78-1.87]	1.52 [0.92-2.44]	1.34 [0.82-2.19]
NICU admission	1.22	1.15	1.19	1.16
	[0.89-1.68]	[0.84-1.58]	[0.85-1.67]	[0.83-1.63]

Only unplanned C/S and pre-eclampsia in "normal" untreated women are significant but all trends suggest poorer outcomes with CDA criteria

August 2014

Comments on "Considerations"

- Do we have sufficient evidence with respect to treatment benefit at the various thresholds to make an informed decision....
 - The ACHOIS data and the majority of the meta-analysis data was made based on old WHO criteria... the **2h value** was what diagnosed almost all of them and it was lower than both the OR for 1.75 (8.5) and 2 (9.0)...it was 7.8mmol/L!
 - Thus the present historical outcome data suggests even lower cutoff values would be justified...
- What is the <u>LONG TERM economic cost of NOT treating</u>, thus not recognizing women and offspring with elevated risks ?
 - Prevention of DM early rather than late is a justifiable cost
 - Prevention of obesity and potentially adolescent diabetes in the offspring also would justify costs ?

The cost-effectiveness of gestational diabetes screening including prevention of type 2 diabetes: application of a new model in India and Israel

- WHO has proposed that interventions costing <u>less than the per capita</u> <u>GDP</u> of a country be deemed "highly cost-effective", and those <u>costing up to three times per-capita GDP</u> "cost-effective" [<u>37</u>].
- Screening and treating gestational diabetes, considering adverse perinatal events and future diabetes, has an incremental costeffectiveness of <u>\$1626 per Diability Adjusted Life Years (DALY)</u> averted for a general hospital in <u>India</u>, and <u>\$1830 per DALY averted</u> <u>for an HMO in Israel</u>.
- Since the 2010 per-capita GDP of India and Israel are \$3500 and \$29 800 [<u>38</u>], respectively, the interventions are "highly costeffective".

Marseille et al, J. Matern Fetal Neonatal Med 2013: 26(8) p 802

A question of balance...

Poorer pregnancy outcomes Obese mothers with diabetes Obese offspring ? Future patients? Overall increased societal costs?

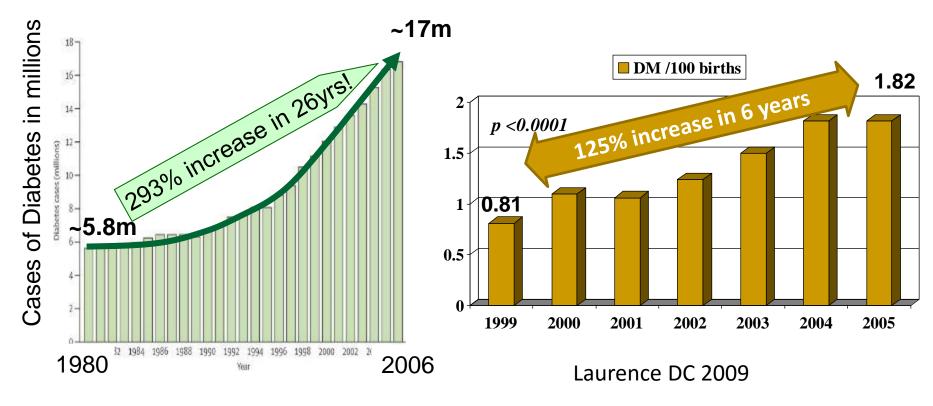
An overloaded medical system Harried doctors & nurses Exorbitant initial treatment costs

What about after the baby is born – for the Mom?

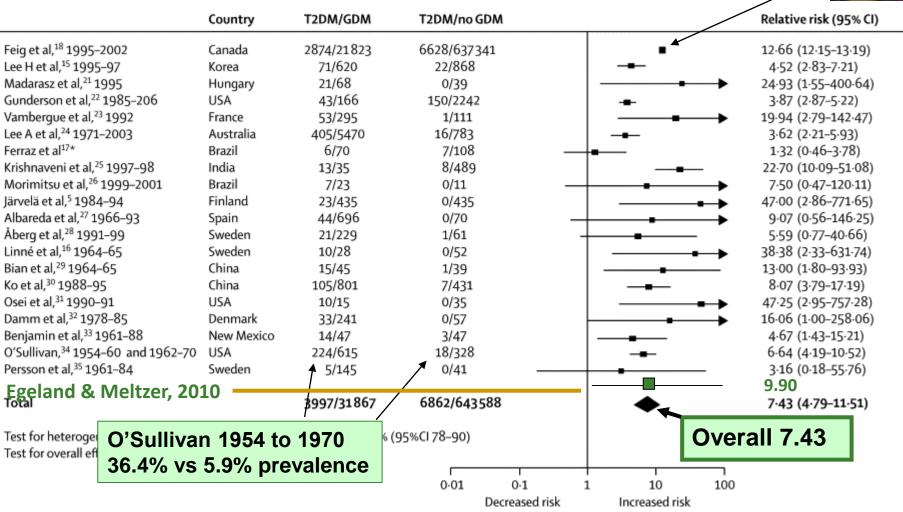
Understand the controversies surrounding the diagnosis of GDM comparing 100g/75g criteria

Understand the short and long-term risks for mothers

Understand the short and long-term risks for the offspring...

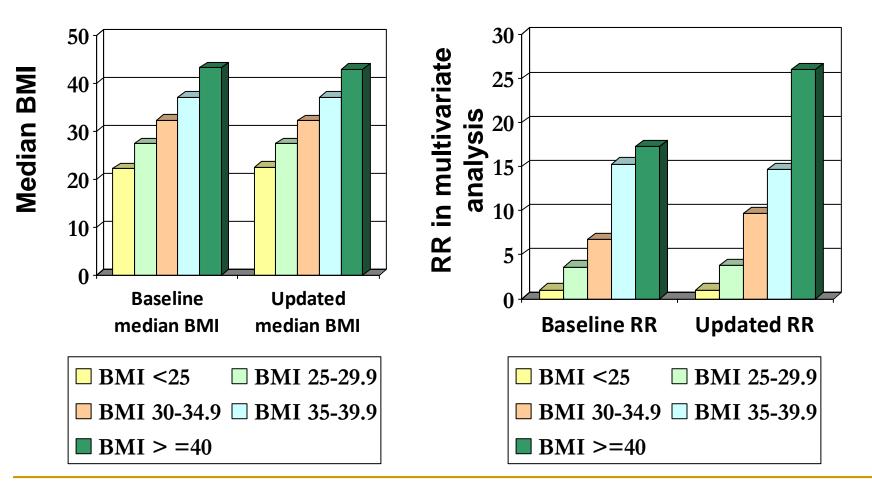


The Incidence of Diabetes (and type 2 DM in pregnancy) is Increasing



Data from Centers for Disease Control and Prevention

Pre-existing DM2 in pregnancy Kaiser-Permanente Data



Overall prevalence of Type 2 DM post GDM 12.66 Feig

Bellamy et al, The Lancet, May 2009

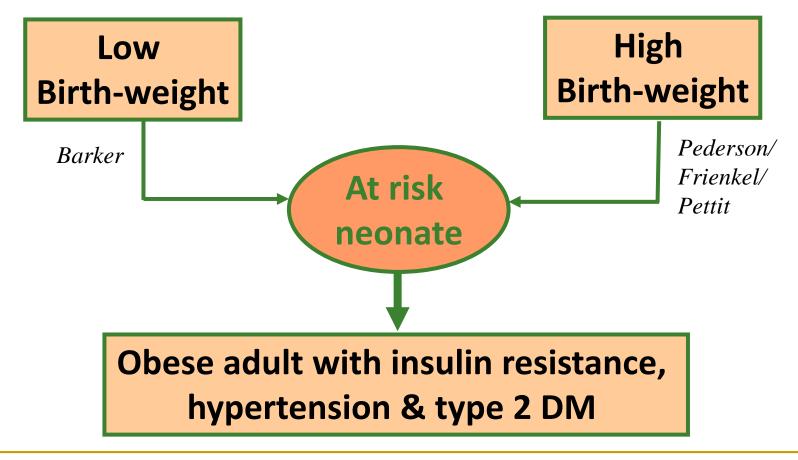
Risk of Type 2 DM post GDM related to BMI changes over time

Bao et al, Diabetologia 2015 – Nurses' Health Study II

Postpartum GDM Management Checklist

- 2. 75g OGTT between 6 weeks 6 months postpartum to detect prediabetes or diabetes
- 3. Discuss increased long-term risk of diabetes – Importance of returning to prepregnancy weight

What about after the baby is born – for the offspring?


Understand the controversies surrounding the diagnosis of GDM comparing 100g/75g criteria

Understand the short and long-term risks for mothers

Understand the short and long-term risks for the offspring...

In-Utero Fetal programming

A stimulus or an insult at a critical and sensitive period of early life which permanently alters the organism's physiology and metabolism

Maternal DM leads to increased DM in offspring

- Pima Indian Population in Southern United States ...moved from an agrarian lifestyle to almost no activity
 - NIH began studying the diabetes risks early in the 1970's
 - Treatment of DM and GDM was not well-established initially, so even if diagnosed, glucose control was relatively poor. (personal communication with Dr. Bennett)
- Increased obesity in offspring of Pima women with DM2 than non-DM2 women (Pettit 1983)
- In Pima Indians aged 25-34 Exposure to DM in utero was strongest risk factor for DM (Dabalea 1999)
 - **70% of offspring of DM2 mothers**
 - **15% of offspring of non-DM mothers**
 - □ Ages 7 11 already see increased systolic BP in offspring
 - Evidence of increase MAU 4 6X if DM in utero

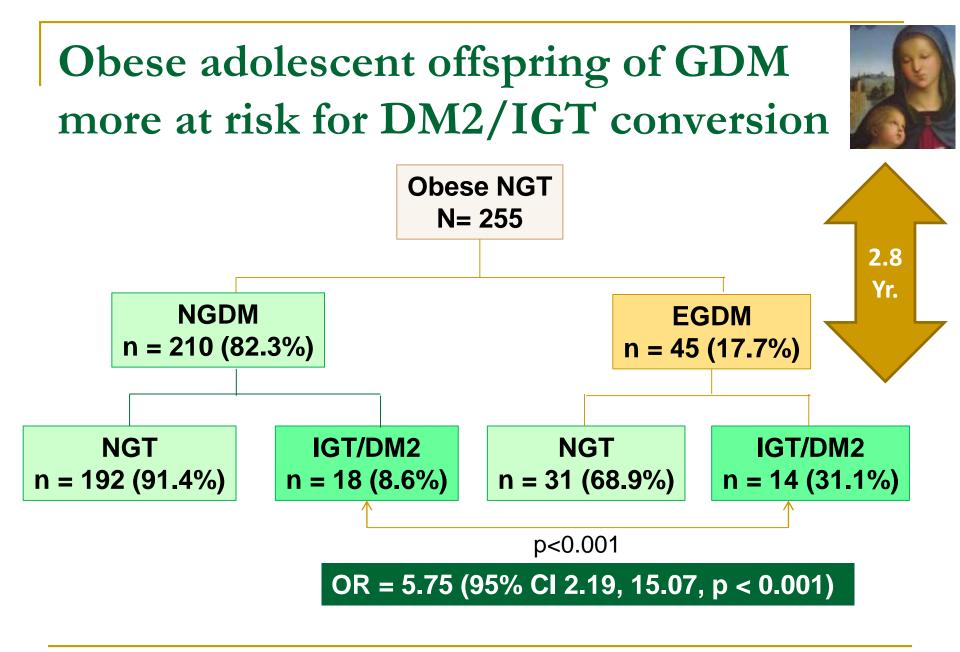
Childhood Obesity & Metabolic Imprinting

- HMO's in Northwest USA & Hawaii with births 1995-2000.
- Offspring studied (9439) 5-7 years later
- Universal screen (> 140); NDDG criteria for treatment GDM
- * sex specific weights

Mother's Glucose test result	Odds Ratio For Overweight (≥ 85%ile) child *	Odds ratio For Obese child (≥ 95%ile)*
Normal	Reference	Reference
+ GS, normal OGTT	0.98	0.97
+ GS, 1 abn (CC or NDDG)	1.37	1.30
+ GS, + CC, - NDDG	1.89	1.82
+GS, + NDDG - treated	1.29	1.38

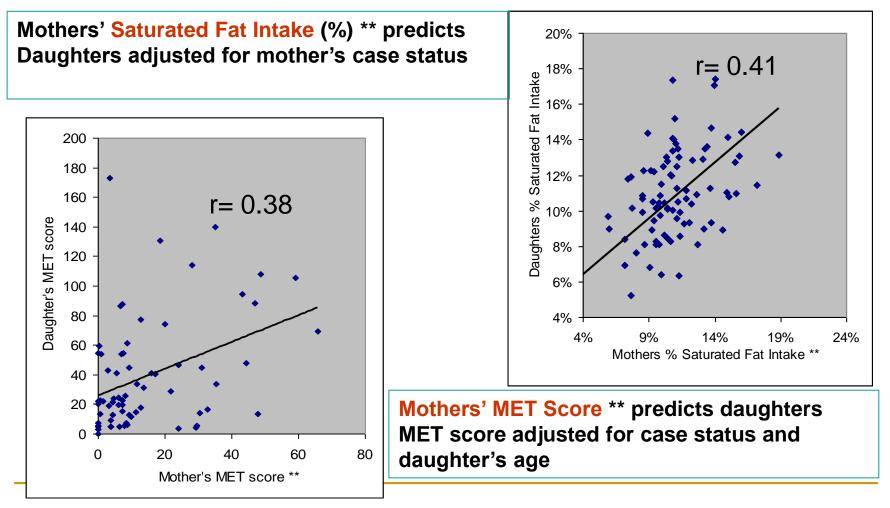
Offspring risk lower in treated women than with milder GDM untreated

Hillier, T et al: Diabetes Care 2007(30)2287


Long-term studies looking at offspring

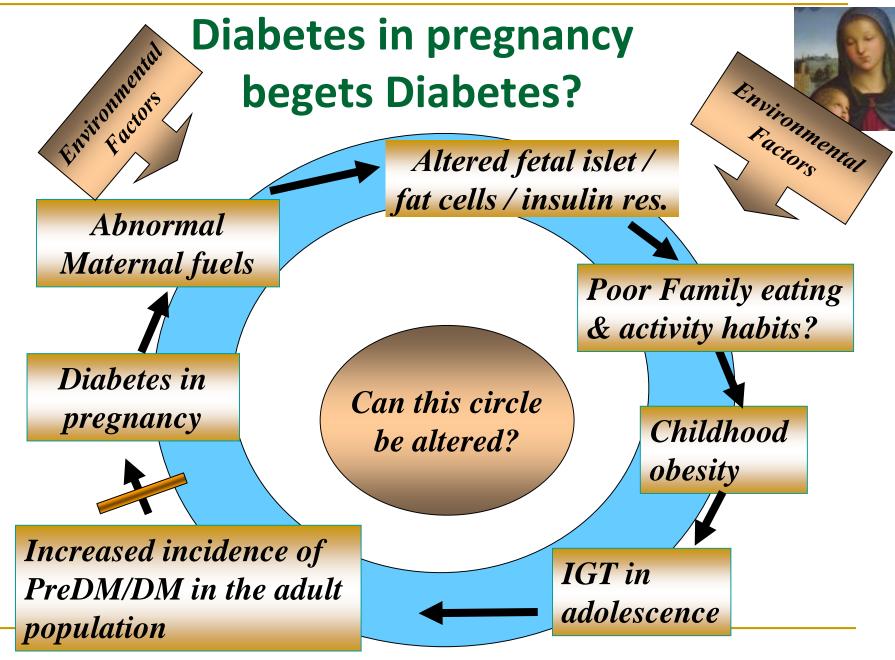
Author, year Pays		Patients / Controls	Age of offspring	GI %
		Offspring DM1 & DM2	Age 1 - 4	9.4%
Plagemann 1997	RR of IGT	= 4.7 for ODM with elevate	d insulin level	20%
Silverman 1998	Chicago, USA	96 Offspring of DM1/DM2 & GDM	Age 8 – 17 Amnio. Ins. Lo vs hi	31.5% 17% <mark>/ 63%</mark>
Dabalea 1999	Pima USA	Offspring of GDM/DM or not	Age 25 – 34 - GDM Controls: Non GDM	70% 15%
Keely 2006	Ottawa, Canada	Offspring of GDM treatment intense or not	Age 8 – 17	36%
Clausen 2007	Denmark	Offspring of + RF women + or – for GDM: O-DM1, O-Bkgd population	Age 18-27 O-GDM O-nonGDM	21%OR 12%
OR O-GDM relative to O-Background for DM/GI was 7.76				
Vaarasmaki, 2009	Finland	95 O-GDM; 3903 Reference grp	18.4 vs 8.4% (P<0.001)	Not reported
Egeland, Meltzer 2010	Montreal Canada	Case-control study matched for age, social status 89 cases,99 controls	Age 14-16 girls GDM	1% 0%
Very low incidence of offspring GI???				

February 2010



Holder et al, Diabetologia 2014; 57:2413

Like mother... like daughter



February 2010

Meltzer, Egeland, EASD abstract, 2008

February 2010

Lifestyle Prevention: Good Diet, Good Habits

All of these habits – less than 10% develop T2DM

- BMI < 25 (23 in Asians?)</p>
- Diet high in cereal fiber & polyunsaturated fat and low in trans fat and glycemic load
- Exercise > 150 minutes/week of moderate intensity
- No smoking
- Consumption of low amounts of alcohol (< 9 drinks a week) may reduce risk

Lifestyle Prevention: Activity

- > Aerobic activity equal to brisk walking or more at least 3 times a week (≥150 min).
- Resistance exercises 3 times per week for 3 sets of 10 repetitions
- General increase in activity levels of any kind needs to be encouraged

February 2010

Cost considerations

 Knowing lifetime excess medical costs attributable to diabetes provides a benchmark from which to measure the maximum future medical costs that could be avoided by preventing diabetes.

Age at diagnosis	Discounted life-time medical spending for people with vs without diabetes
40	\$124, 600
50	\$91,200
60	\$53,800
65	\$35,900

 Younger age at diagnosis and female sex were associated with higher levels of lifetime excess medical spending attributed to diabetes.

X Zhuo X, Zhang P,Barker L, et al Lifetime Cost of Diabetes and Its Implications for Diabetes Prevention, DC 2014, August 21

