HURRICANE RESISTANT BUILDINGS

Building CAT-5 Resistant Timber Roofs

An Illustrated Guide for Builders

July 2021

Acknowledgements

Primary author	Eng. Shalini Jagnarine
Contributor & Illustrator	Eng. Gisell Alban
Contributor	Dr. Dana van Alphen
Contributor	Eng. Marie-Terese Louis
Peer reviewer	Hon. Tony Gibbs
Peer reviewer	Eng. Clifford Murray
Reviewer	Eng. Alfrico Adams
Reviewer	Clemens Buter
Editor	Patricia Bittner

Contents

Chapter 1 Introduction
Context: Who is it for and when to use it?5
Scope: What is contained in this Guide?
Building geometry constraints of this guide6
Key: How to use this guide6
Chapter 2 Building performance
Building geometry7
Chapter 3 Building Components
Roof components
Walls (Masonry walls)9
Chapter 4 Roofs to Resist Category 5 Hurricanes
Buildings in Exposure B
Buildings in Exposure C
Buildings in Exposure D
Chapter 5 Timber Roof Connectors
Examples of types of connectors
Prescriptive connectors
Rafter Connectors
Truss/Rafter to Masonry/Concrete25
Hip Rafter to Wall Connector
Rafter Connectors
Chapter 6 Roof Sheeting
Roof sheets

Roofing scre	Roofing screws					
Chapter 7	Quality Control Checklist					
Bibliography						
Annex 1 – Wir	nd Speeds					
Annex 2 – List	of Hardwoods and Softwoods					
Annex 3 – Sam	nple Calculation					

Chapter 1 Introduction

The year 2020 set a record for the highest number of tropical/subtropical storms registered in a year. According to data from the National Oceanic and Atmospheric Administration (NOAA), the 2020 Atlantic Hurricane Season was the busiest year, with 29 events that caused economic losses estimated at USD 50 billion, according to data from AON.(1) Climate change has also brought with it an increased risk of the impact of higher intensity storms.(2) The rise in water temperature in the Atlantic is causing a greater chance for hurricanes to develop. These natural events are not only more frequent but, in some cases, more catastrophic as well.

One major impediment to resilience is the lack of suitably qualified or experienced professionals to design and build hurricane-resistant buildings in many countries that are typically the most affected. In most developing countries, current building codes do not encourage the construction of robust structures that will withstand major hurricanes nor are the building codes enforced. Additionally, reconstruction after the impact of such events is often rushed and poorly designed and executed.

The Pan American Health Organization (PAHO) aims to reduce the recurrent damage following the impact of major hurricanes, with this illustrated, easy-to-follow guide to build Category 5-resistant roofs and external walls.

Context: Who this guide is for and when to use it

These guidelines are to be used by local builders and laymen for the safe design and construction of roofs in hurricane-prone regions. True sustainability is achieved once people understand what they can do to help themselves and prevent future damage and losses. Therefore, we aim to provide graphic tools illustrating the safe and proper way to build and connect timber roofs to help minimize the loss of building infrastructure, impact on livelihoods and loss of lives.

Scope: What is contained in this Guide?

Gable or Hip Roofs: recommended sizing and spacing of the timber structure.

Many buildings, including essential facilities such as health centres and shelters, are often built without the input from qualified structural engineers, designers, and builders. This guide provides detailed illustrations and information on the sizing of typical components for timber roofs which are resilient to wind speeds equivalent to Category 5 Hurricanes¹.

Minimum typical detailing for external concrete block walls is also included as the support structure for the timber roof.

¹ Category 5 Hurricane, according to the Saffir-Simpson scale, has minimum 3-second gust wind speeds of 173 mph or 77m/s over land.

Building geometry constraints of this Guide

This guide can be used for buildings in general, as long they comply with the following dimensions:

- Maximum building width: 60 feet or 18.3 metres
- Maximum building length: 80 feet or 24.4 metres
- Maximum mean roof height: 33 feet or 10 metres. Buildings that are 1-storey to 3-storeys high
- Minimum roof pitch: 20 degrees

The information in this guide pertains to buildings that are either partially or fully enclosed in the event of a storm or hurricane. This means that the windows and doors should be fully closed to prevent wind or driving rain from causing damage to the interior furnishings and finishes of the building.

The guide is applicable to pitched roofs that are either hip or gable, as illustrated below:

Key: How to use this Guide

This Guide is divided into 7 chapters. Chapters 1- 3 provide an introduction on buildings, the performance of different buildings according to their geometry, and the components of roofs and walls for the reader's reference. Chapter 5 contains illustrations of typical timber connectors, which should be installed at every timber joint or intersection. Chapter 6 contains useful information on roof sheeting and roofing screws. Chapter 7 comprises a simple Checklist that should be followed for timber roofs.

Chapter 4 contains practical design information to determine the maximum spacing of different standard sizes of timber roof members. It includes the roof components sizing and configuration. To find out which configuration/sub chapter applies to you, follow these steps:

- 1. Determine which exposure category your building falls into:
 - a. Exposure B refers to an urban or suburban location or a downtown location.
 - b. Exposure C refers to open country or grasslands.
 - c. Exposure D refers to flat unobstructed site facing a large water body.
- 2. Determine what is your roof type. This guide contains two types: gable or hip.
- 3. Determine the maximum spacing of the timber rafters and purlins in imperial or metric units for three standard timber sizes. Each table represents a maximum building width and includes two types of timber: hardwood or softwood.

Chapter 2 Building Performance

Building geometry

The illustrations below highlight safe, robust building shapes that are resilient (\checkmark), that is, inherently able to withstand many of the forces that impact them, versus shapes that may be more susceptible to damage (\Join) when impacted by events such as hurricanes and earthquakes.

Figure 1 (above)- Regular geometric shapes are recommended.

Figure 2. Irregular plan geometries are more prone to damage.

	Irregular geometry in elevation	
×	×	×
Buildings on hillsides with tall slender columns on lower levels	Taller ground floor, such as buildings with shops on the ground floor	Taller middle floor

Figure 3.- Irregular geometries in elevation are also more prone to damage.

Figure 4. Breaking up of irregular geometry to make it regular.

Chapter 3 Building Components

Roof components

For reference, Figure 5 illustrates the main roof components that will be mentioned in the following sections of this guideline.

Figure 5 Roof components and minimum roof pitch for (a) gable roofs and (b) hip roofs.

In this document, a minimum roof pitch of 20° is considered for gable roofs and 22.6° for hip roofs. The main timber structural members are considered, that is, the rafters and purlins.

Walls (masonry walls)

This guideline considers 6" (150mm) wide block walls as the minimum external wall thickness. Walls need to be reinforced horizontally and vertically to increase the resistance to high winds and earthquakes. At a minimum, the horizontal reinforcement should be steel reinforcing bars inserted every third block course, and the vertical reinforcement is a steel bar inserted every second core (the hollow pockets of the concrete block) and filled with concrete or cement grout for keeping the steel bar in place, as shown in illustration (a). Illustration (b) shows the reinforced concrete (RC) beams over the gable end walls, also called the capping beam. The ring beam is the horizontal beam that forms a ring around the building. The reinforced concrete columns frame the corners of the block walls, provide resistance and support for the walls and roof. The lintel beams provide support around door and window openings.

Figure 6 (a) typical minimum framing structural frame components of concrete block masonry walls and (b) typical reinforcement for portion of wall

It is recommended that a certified structural engineer advise on the correct reinforcement requirements for the structural walls, beams, columns, and foundation.

Note: Confining the block walls in RC beams and columns makes them more resistant to failure in earthquakes or hurricanes.

Chapter 4 Roofs to Resist Category 5 Hurricanes

This chapter presents the design of lightweight timber roofs to resist Category 5 Hurricanes. Follow the four steps listed below to design your roof(3).

Step 1 – Select the Exposure Category based on your building's location.

Each table represents one of three different geographic locations (based on building codes³) referred to as 'Exposure Categories.' These three categories are as follows:

Step 2 – Select your roof type (shape).

Each table represents one of two different types of roof types/shapes:

Step 3 – Select the maximum width of your building.

Two maximum widths are presented in each table: 15.3m or 50-feet, and 18.3m or 60-feet.

Step 4 – Select the type of lumber or wood material to be used.

Two types of wood are presented. Each table represents either softwoods of pine or cedar, or hardwoods of oak and maple. Refer to Annex 2 for the specific list of types of woods.

Buildings in Exposure B

Rafter sizes

(in)

6 x 2

8 x 2 10 x 2 st

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber roof framing for a gable roof, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 1000mm (3'-0"). Each purlin connection to rafter carries an uplift force of 0.8kN or 180lbs.

Applicable for buildings with a maximum width of 15.3m. (Metric units)

				-						
	Softwood: Pines and Cedars					Hardwood: Maples or Oak				
	Maximum rafter spa	n allowable acing (mm)	Uplift f connect	orces at ions (kN)			Maximum rafter spa	allowable cing (mm)	Uplift connec	forces at ctions (kN)
Rafter sizes	Higher	Lower	Higher	Lower		Rafter sizes	Higher	Lower	Higher	Lower
(mm)	strength	strength	strength	strength		(mm)	strength	strength	strength	strength
150 x 50	450	360*	2.60	2.08		150 x 50	600	490	3.47	2.83
200 x 50	790	630	4.57	3.64		200 x 50	1050	860	6.07	4.97
250 x 50	1230	980	7.11	5.66		250 x 50	1630	1330	9.42	7.69

Applicable for buildings with a maximum width of 50'. (Imperial units)

Softwo	od: Pines and	Cedars		Hardwood: Maples or Oak					
Vaximun rafter sp	n allowable bacing (in)	Uplift connect	forces at tions (lbs)		Maximum a rafter space	illowable cing (in)	Uplift fo connecti	orces at ons (lbs)	
ligher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Low	
rength	strength	strength	strength	(in)	strength	strength	strength	stren	
18	14*	584	468	6 x 2	24	19	780	636	
31	25	1027	818	8 x 2	41	34	1365	111	
48	39	1598	1272	10 x 2	64	52	2118	172	

Lower

strength

636 1117

1729

				<u> </u>					
	Softwo	od: Pines and	Cedars		Hardwood: Maples or Oak				
	Maximun	n allowable	Uplift	forces at		Maximum	allowable	Uplift f	orces at
	rafter spa	acing (mm)	connect	tions (kN)		rafter spac	ing (mm)	connecti	ions (kN)
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength
150 x 50	310	250*	2.14	1.73	150 x 50	420	340*	2.9	2.35
200 x 50	550	440	3.8	3.04	200 x 50	730	600	5.05	4.15
250 x 50	860	680	5.94	4.70	250 x 50	1140	930	7.88	6.43

Applicable for buildings with a maximum width of 18.3m. (Metric units)

Applicable for buildings with a maximum width of 60'. (Imperial units)

	Softwo	od: Pines and	d Cedars			Hardw	ood: Maples	s or Oak	
	Maximur rafter s	n allowable bacing (in)	Uplift	forces at tions (lbs)		Maximum rafter spa	allowable icing (in)	Uplift connec	forces at tions (lbs)
Rafter size	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower
(in)	strength	strength	strength	strength	(in)	strength	strength	strength	strength
6 x 2	12	10*	481	389	6 x 2	17	13*	652	528
8 x 2	22	17	854	683	8 x 2	29	24	1135	933
10 x 2	34	27	1335	1057	10 x 2	45	37	1771	1445

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and Softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber roof framing for a gable roof, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 915mm (3'-0"). Each purlin connection to rafter carries an uplift force of 0.8kN or 180lbs.

	Softwoo	d: Pines and	Cedars			Hardwo	od: Maples or	[.] Oak	
	Maximum rafter spa	Maximum allowable Uplift forces at connections (kN)		orces at ions (kN)		Maximum allowable rafter spacing (mm)		Uplift forces at connections (kN)	
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength
150 x 50	540	430*	2.58	2.05	150 x 50	710	580	3.39	2.77
200 x 50	950	760	4.53	3.63	200 x 50	1250	1000	5.96	4.77
250 x 50	1460	1100	6.97	5.25	250 x 50	1900	1580	9.07	7.54

Applicable for buildings with a maximum width of 15.3m. (Metric units)

Applicable for buildings with a maximum width of 50'. (Imperial units)

	Softwoo	d: Pines and	Cedars		
	Maximum rafter sp	allowable acing (in)	Uplift f connect	orces at ions (lbs)	
Rafter sizes	Higher	Lower	Higher	Lower	Rafter s
(in)	strength	strength	strength	strength	(in)
6 x 2	21	17*	580	461	6 x 2
8 x 2	37	30	1018	816	8 x 2
10 v 2	F7	40	1567	1100	10.4

Hardwood: Maples or Oak Maximum allowable rafter spacing (in) Uplift forces at connections (lbs) Rafter sizes (in) Higher strength Lower strength 6 × 2 28 22 762						
	Maximum rafter sp	allowable acing (in)	Uplift fo connecti	orces at ons (lbs)		
Rafter sizes	Higher	Lower	Higher	Lower		
(in)	strength	strength	strength	strength		
6 x 2	28	23	762	623		
8 x 2	49	39	1340	1072		
10 x 2	75	62	2039	1695		

Applicable for buildings with a maximum width of 18.3m. (Metric units)

	Softwoo	d: Pines and	Cedars		
	Maximum	allowable	Uplift fo		
Rafter sizes	Higher	Lower	Higher	Lower	
(mm)	strength	strength	strength	strength	
150 x 50	370	300*	2.11	1.71	
200 x 50	660	530	3.77	3.02	
250 x 50	1000	820	5.71	4.68	

	Hardwo	od: Maples o	or Oak				
	Maximum allowable Uplift forces at rafter spacing (mm) connections (kN)						
Rafter sizes	Higher	Lower	Higher	Lower			
(mm)	strength	strength	strength	strength			
150 x 50	500	400*	2.85	2.28			
200 x 50	880	710	5.02	4.05			
250 x 50	1350	1100	7.70	6.28			

Applicable for buildings with a maximum width of 60'. (Imperial units)

	Softwoo	d: Pines and	Cedars	
	Maximum rafter sp	allowable acing (in)	Uplift fo connecti	orces at ions (lbs)
Rafter sizes (in)	Higher strength	Lower strength	Higher strength	Lower strength
6 x 2	15	12*	474	384
8 x 2	26	21	847	679
10 x 2	39	32	1284	1052

	Hardwo	od: Maples o	or Oak				
	Maximum rafter spa	allowable cing (in)	Uplift connec	forces at tions (lbs)			
Rafter sizes	Higher	Lower	Higher Lower				
(in)	strength	strength	strength	strength			
6 x 2	20	16*	641	513			
8 x 2	35	28	1128	910			
10 x 2	53	43	1731	1412			

Buildings in Exposure C

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and Softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber roof framing for a gable roof, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 915mm (3'-0"). Each purlin connection to rafter carries an uplift force of 0.8kN or 180lbs.

Applicable for buildings with a maximum width of 15.3m. (Metric units)

Softwood: Pines and Cedars	Hardwood: Maples or Oak				
Maximum allowable Uplift forces at rafter spacing (mm) connections (kN)		Maximum allowable rafter spacing (mm)		Uplift forces at connections (kN)	
Rafter sizes Higher Lower Higher Lower	Rafter sizes	Higher	Lower	Higher	Lower
(mm) strength strength strength strength	(mm)	strength	strength	strength	strength
150 x 50 310 240* 2.62 2.03	150 x 50	410	330*	3.47	2.79
200 x 50 540 430* 4.57 3.64	200 x 50	720	590	6.09	4.99
250 x 50 840 670 7.10 5.67	250 x 50	1110	910	9.39	7.7

Applicable for buildings with a maximum width of 50'. (Imperial units)

	Softwo	od: Pines and	d Cedars			Hardwood: Maples or Oak					
	Maximum allowable Uplift forces at rafter spacing (in) connec20tions (lbs)						Maximum rafter spa	allowable cing (in)	Uplift forces at connections (lbs)		
Rafter sizes	Higher	Lower	Higher Lower		1	Rafter sizes	Higher Lower		Higher	Lower	
(in)	strength	strength	strength	strength		(in)	strength	strength	strength	strength	
6 x 2	12	9*	589	456		6 x 2	16	13*	780	627	
8 x 2	21	17*	1027	818		8 x 2	28	23	1369	1122	
10 x 2	33	26	1596	1596 1275		10 x 2	44	36	2111	1731	

	Softwo	od: Pines ar	nd Cedars			Hardwood: Maples or Oak					
	Maximum allowable rafter spacing (mm)		Uplift forces at connections kN [lbs]			Maximum rafter spa	allowable cing (mm)	Uplift f conne kN	orces at ections [lbs]		
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower		
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength		
150 x 50	210	170*	2.12	1.72	150 x 50	280	230*	2.83	2.33		
200 x 50	380	300*	3.84	3.03	200 x 50	500	410*	5.06	5.06		
250 x 50	580	470	5.87	4.75	250 x 50	770	630 7.79		7.79		

Applicable for buildings with a maximum width of 18.3m. (Metric units)

Applicable for buildings with a maximum width of 60'. (Imperial units)

	Softwoo	d. Dines and	Codars			Hardwood: Maples or Oak					
	Maximum	allowable	Uplift f	orces at			Maximum allowable rafter spacing (in)		Uplift forces at connections (lbs)		
Rafter sizes	Higher	Lower	Higher	Lower		Rafter sizes (in)	Higher strength	Lower strength	Higher strength	Lower strength	
(III) 6 x 2	o	7*	477	207		6 x 2	11	9*	636	524	
6 X 2	8	12*	4//	387		8 x 2	20	16*	1137	933	
8 X 2	15	12*	863	681		10 x 2	30	25	1751	1432	
10 x 2	23	19	1320	1068							

Exposure Category C

Roof type: Hip

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and Softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber hip roof framing, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 1200mm (4'-0"). Each purlin connection to rafter carries an uplift force of 0.68kN or 153lbs. The minimum pitch for this roof is 22.6° (5:12).

				-								
	Softwoo	d: Pines and	Cedars			Hardwood: Maples or Oak						
	Maximum allowable		Uplift forces at				Maximum allowable		Uplift forces at			
rafter spacing (mm)			connections (kN)				rafter spa	acing (mm)	connec	tions (kN)		
Rafter sizes	Higher	Lower	Higher	Lower		Rafter sizes	Higher	Lower	Higher	Lower		
(mm)	strength	strength	strength	strength		(mm)	strength	strength	strength	strength		
150 x 50	350	280*	2.53	2.03		150 x 50	470	380*	3.4	2.75		
200 x 50	620	500	4.49	3.62		200 x 50	830	670	6.01	4.85		
250 x 50	960	770	6.95	5.57		250 x 50	1280	1040	9.26	7.53		

Applicable for buildings with a maximum width of 15.3m. (Metric units)

Applicable for buildings with a maximum width of 50'. (Imperial units)

	Softwoo	d: Pines an	d Cedars		Hardwood: Maples or Oak				
	Maximum allowable Uplift forces at		orces at		Maximum	allowable	Uplift forces at		
	rafter spacing (in) connections (lbs)					rafter spa	cing (in)	connections (lbs)	
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower
(in)	strength	strength	strength	strength	(in)	strength	strength	strength	strength
6 x 2	14	11*	569	456	6 x 2	19	15*	764	618
8 x 2	24	20	1009	814	8 x 2	33	26	1351	1090
10 x 2	38	30	1562	1252	10 x 2	50	41	2082	1693

Applicable for buildings with a maximum width of 18.3m. (Metric units)

	Softwood	I: Pines and	Cedars		Hardwood: Maples or Oak					
	Maximum allowable Uplift forces at rafter spacing (mm) connections (kN)				Maximum allowable rafter spacing (mm)		Uplift forces at connections (kN)			
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower	
(mm)	strength	strength	strength	strength	(11111)	strength	strength	strength	strength	
150 x 50	240	190*	2.08	1.64	150 x 50	330	260*	2.86	2.25	
200 x 50	430	350*	3.72	3.03	200 x 50	580	470	5.02	4.07	
250 x 50	670	540	5.80	4.67	250 x 50	890	730	7.7	6.32	

Applicable for buildings with a maximum width of 60'. (Imperial units)

	Softwoo	d: Pines and	Cedars		Hardwood: Maples or Oak					
	Maximum allowable Uplift forces at rafter spacing (in) connections (lbs)					Maximum allowable Uplift forces a rafter spacing (in) connections (II			orces at ions (lbs)	
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower	
(in)	strength	strength	strength	strength	(in)	strength	strength	strength	strength	
6 x 2	9	7*	468	369	6 x 2	13	10*	643	506	
8 x 2	17	14*	836	681	8 x 2	23	19	1128	915	
10 x 2	26	21	1304	1050	10 x 2	35	29	1731	1421	

* Spacing too close and inefficient use of material. Consider using larger size rafters or higher strength wood.

Buildings in Exposure D

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and Softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber gable roof framing, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 915mm (3'-0"). Each purlin connection to rafter carries an uplift force of 0.92kN or 207lbs.

Applicable for buildings with a maximum width of 15.3m. (Metric units)

	Softwoo	d: Pines and	d Cedars		Hardwood: Maples or Oak					
	Maximum allowable Uplift forces at rafter spacing (mm) connections (kN)					Maximum rafter spa	allowable cing (mm)	Uplift forces at connections (kN)		
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower	
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength	
150 x 50	250	200*	2.6	2.01	150 x 50	330	270*	3.43	2.81	
200 x 50	440	350*	4.58	3.64	200 x 50	580	480	6.03	4.99	
250 x 50	680	540	7.07	5.62	250 x 50	900	630	9.36	7.7	

Applicable for buildings with a maximum width of 50'. (Imperial units)

	Softwoo	d: Pines and	d Cedars		Hardwood: Maples or Oak						
	Maximum a rafter spa	allowable cing (in)	Uplift f	orces at ions (Ibs)		Maximum rafter spa	allowable cing (in)	Uplift forces at connections (lbs)			
Rafter sizes (in)	Higher strength	Lower strength	Higher strength	Lower strength	Rafter sizes (in)	Higher strength	Lower strength	Higher strength	Lower strength		
6 x 2	10	8*	584	451	6 x 2	13	11*	771	632		
8 x 2	17	14*	1030	818	8 x 2	23	19	1356	1122		
10 x 2	27	21	1539	1263	10 x 2	35	29	2104	1731		

	Softwoo	d: Pines and	d Cedars		Hardwood: Maples or Oak						
	Maximum rafter space	allowable	Uplift f	orces at ions (kN)		Maximum rafter space	allowable ing (mm)	Uplift forces at connections (kN)			
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower		
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength		
150 x 50	170	140*	2.12	1.74	150 x 50	230	190*	2.86	2.36		
200 x 50	310	240*	3.86	2.99	200 x 50	410	330*	5.1	4.11		
250 x 50	470	380*	5.85	4.73	250 x 50	630	510	7.84	6.35		

Applicable for buildings with a maximum width of 18.3m. (Metric units)

Applicable for buildings with a maximum width of 60'. (Imperial units)

Maximum spacing for rafters based on different typical sizes are indicated in the tables below. Hardwoods and Softwoods are shown in separate tables. Refer to Annex 2 for the list of suitable types of wood considered in this design. The purlins, for the typical timber hip roof framing, are considered to have a standard size of 50mm x 50mm (2" x 2") at a maximum spacing of 915mm (3'-0"). Each purlin connection to rafter carries an uplift force of 0.95kN or 215lbs. The minimum pitch for this roof is 22.6° (5:12).

	Softwoo	d: Pines and	l Cedars		Hardwood: Maples or Oak						
	Maximum a rafter space	allowable ing (mm)	Uplift fo connect	orces at ions (kN)		Maximum a rafter spac	allowable ing (mm)	Uplift forces at connections (kN)			
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower		
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength		
150 x 50	290	230*	2.55	2.02	150 x 50	380	310*	3.34	2.73		
200 x 50	510	410*	4.49	3.61	200 x 50	680	550	5.98	4.84		
250 x 50	790	630	6.95	5.54	250 x 50	1050	860	9.24	7.56		

Applicable for buildings with a maximum width of 15.3m. (Metric units)

Applicable for buildings with a maximum width of 50'. (Imperial units)

	Softwoo	d: Pines an	d Cedars			Hardwood: Maples or Oak					
	Maximum	allowable	Uplift f	orces at			Maximum	allowable	Uplift forces at		
	rafter spa	cing (in)	connect	ions (lbs)			rafter spa	cing (in)	connect	ions (lbs)	
Rafter sizes	Higher	Lower	Higher	ligher Lower		Rafter sizes	Higher Lower		Higher	Lower	
(in)	strength	strength	strength	strength		(in)	strength	strength	strength	strength	
6 x 2	11	9*	573	454		6 x 2	15	12*	751	614	
8 x 2	20	16*	1009	812		8 x 2	27	22	1344	1088	
10 x 2	31	25	1562	1245		10 x 2	41	34	2077	1699	

Applicable for buildings with a maximum width of 18.3m. (Metric units)

	Softwoo	d: Pines and	l Cedars		Hardwood: Maples or Oak					
	Maximum rafter spac	allowable ing (mm)	Uplift f connect	orces at ions (kN)		Maximum rafter spac	allowable ing (mm)	Uplift forces at connections (kN)		
Rafter sizes	Higher	Lower	Higher	Lower	Rafter sizes	Higher	Lower	Higher	Lower	
(mm)	strength	strength	strength	strength	(mm)	strength	strength	strength	strength	
150 x 50	200	160*	2.1	1.68	150 x 50	270	220*	2.84	2.31	
200 x 50	360	280*	3.79	2.95	200 x 50	470	390*	4.94	4.1	
250 x 50	550	440	5.79	4.63	250 x 50	730	600	7.68	6.31	

Applicable for buildings with a maximum width of 60'. (Imperial units)

	Softwood	I: Pines and (Cedars				
	Maximum a rafter spa	allowable cing (in)	Uplift forces at connections (lbs)				
Rafter sizes (in)	Higher strength	Lower strength	Higher strength	Lower strength			
6 x 2	8	6*	472	378			
8 x 2	14	11*	852	663			
10 x 2	22	17	1302	1041			

	Hardwood: Maples or Oak												
		Maximum a rafter spa	allowable cing (in)	Uplift forces at connections (lbs)									
	Rafter sizes	Higher	Lower	Higher	Lower								
	(in)	strength	strength	strength	strength								
	6 x 2	11	9*	638	519								
	8 x 2	19	15*	1111	922								
	10 x 2	29	24	1726	1418								

Chapter 5 Timber Roof Connectors

This section illustrates the typical connectors for timber roof members to resist high winds. The specific type and size of connector depends on the uplift forces that need to be resisted at each connection. It also depends on the proprietary strength of the brand of the hurricane connector available in your specific country.

Note that the uplift forces for the rafters and purlins are included in the design tables in Chapter 4 'Roofs to Resist Category 5 Hurricanes' of this guide. The connector(s) used should have a minimum strength to resist the uplift forces stated in the table.

Examples of types of connectors

Prescriptive connectors

PAHO does not advocate for specific suppliers or manufacturers.

In an attempt the make this guide more prescriptive and definitive in the building information provided, the following information has been taken from the Simpson StrongTie[®] High Wind Guide (online at: <u>https://embed.widencdn.net/pdf/plus/ssttoolbox/qdm2sqxtml/F-C-HWG20.pdf?u=cjmyin</u>)(4). This is proprietary information on hurricane straps (connectors) manufactured by Simpson StrongTie[®]. These connectors are readily available throughout the Americas.

The load tables give the uplift load resistance of each model of connector and the illustrations highlight possible uses for these straps/ connectors.

Using the Tables Model No.: Fasteners: Allowable Design Loads: The maximum load that This is the This shows the a connection is designed to provide. There may be Simpson multiple design loads acting in different directions fastener quantity (uplift and lateral, F1 or F2) imposed on a connection. Strong-Tie and type required product name. to achieve the table loads. Uplift Fasteners Allowable Loads No. of Model Qty. Plies DF/SP Uplift SPF Uplift No. Req. To Girder/Truss To Wall Framing (Min.) (160) (160) H16 1 (2) 0.148" x 1 1/2" (10) 0.148" x 1 1/2" 1,180 1 LTT20B^{2,3,9} 1 2 (10) 0.148" x 3" (1) 1/2", 5/8" or 3/4" ATR 1,500 1,290 SS H2.5A SS DTT2Z^{2,3,11} 4 2 (20) 0.131" x 1 1/2" (20) 0.131" x 1 1/2" 1,72513 1,410 (8) 1/4" x1 1/2" SDS (1) 1/2" ATR 1.825 1.800 1 1 LGT2 (16) 0.148" x 31/4" 2 (14) 0.148" x 31/4" 2,040 1,755 Qty. Req.: Many tables Nails: See p. 52 for other fastener Products are listed in order include quantity of sizes and information. of increasing allowable uplift. connectors of one, two Allowable load changes or even four connectors greater than 5% from the All installations should be designed in some cases. previous guide are shown only in accordance with the allowable load values set forth in in red. No. of Plies (Min.): Where this guide. applicable, for truss/girder connections, multiple plies will be indicated if required.

Icon Legend

Extra Corrosion Protection

The teal arrow icon identifies products that are available with additional corrosion protection (ZMAX[®], hot-dip galvanized or double-barrier coating). The SS teal arrow icon identifies products also available in stainless steel. Other products may also be available with additional protection; contact Simpson Strong-Tie for options. The end of the product name will indicate what type of extra corrosion protection is provided (Z = ZMAX, HDG = hot-dip galvanized or SS = stainless steel). Stainless products may need to be manufactured upon ordering. See pp. 8–10 for information on corrosion, and visit our website **strongtie.com/info** for more technical information on this topic. See p. 52 for more information in stainless.

Strong-Drive[®] SD Connector Screw Compatible

This icon identifies products approved for installation with Simpson Strong-Tie® Strong-Drive® SD Connector screw. See strongtie.com/sd for more information.

Rafter Connectors

			Fastene	rs (Total)	DF/S	P Allowable	Loads	SPF	Allowable L	oads	
	Model No.	Qty. Req. ¹⁰	To Truss/Rafter	To Plates	Uplift (160)	Parallel to Plate (F ₁) (160)	Perp. to Plate (F ₂) (160)	Uplift (160)	Parallel to Plate (F ₁) (160)	Perp. to Plate (F ₂) (160)	
	H2.5T	1	(5) 0.131" x 1 ½"	(5) 0.131" x 1 ½"	420	135	145	420	135	145	
SS	H2.5ASS ¹¹	1	(5) 0.131" x 21/2"	(5) 0.131" x 21/2"	440	75	70	380	75	70	
	H1	1	(6) 0.131" x 1 1/2"	(4) 0.131" x 21/2"	480	510	190	425	440	165	
	H2.5T	1	(5) 0.131" x 21/2"	(5) 0.131" x 21/2"	590	135	145	565	135	145	
	H2.5A	1	(5) 0.131" x 1 1/2"	(5) 0.131" x 1 1/2"	635 ²	110	110	540	110	110	
	HGA10KT	1	(4) 1/4" x 1 1/2" SDS	(4) 1/4" x 3" SDS	650	1,165	940	500	840	675	
	LTS1213	1	(6) 0.148" x 1 1/2"	(6) 0.148" x 1 1/2"	660 ²	755	1255	555	755	1255	
	H2.5A	1	(5) 0.131" x 21/2"	(5) 0.131" x 21/2"	730 ²	110	110	615	110	110	
	TSP ⁹	1	(9) 0.148" x 1 1/2"	(6) 0.148" x 1 1/2"	755	310	190	650	265	160	
SS	H8	1	(5) 0.148" x 1 1/2"	(5) 0.148" x 1 1/2"	780	95	90	710	95	90	
	H11Z	1	(6) 0.162" x 21/2"	(6) 0.162" x 21/2"	830	525	760	715	450	655	
	H10A Sloped	1	(9) 0.148" x 1 1/2"	(9) 0.148" x 1 1/2"	855	590	285	760	505	285	
	H1	2	(12) 0.131" x 1 1/2"	(8) 0.131" x 21/2"	960	1,020	380	850	880	330	(H2.5A, Two H5 H2.5A TSP
	H10ASS ¹¹	1	(9) 0.148" x 1 1/2"	(9) 0.148" x 1 1/2"	970	565	170	835	485	170	similar) MTS12
SS	MTS1213	1	(7) 0.148" x 1 1/2"	(7) 0.148" x 1 1/2"	990	755	1255	850	755	1255	similar) (H1, H14 similar)
	H2.5T	2	(10) 0.131" x 2 1/2"	(10) 0.131" x 21/2"	990	270	290	990	270	290	
	TSP ⁹	1	(9) 0.148" x 1 1/2"	(6) 0.148" x 3"	1,015	310	190	875	265	160	
	H10AR	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1/2"	1,050	490	285	905	420	285	
	H10A-2	1	(9) 0.148" x 1 1/2"	(9) 0.148" x 1 1/2"	1,080	680	260	930	585	225	
	H10A	1	(9) 0.148" x 1 1/2"	(9) 0.148" x 1 1/2"	1,105 ²	565	285	1,015	485	285	
	H2.5T	2	(10) 0.131" x 21/2"	(10) 0.131" x 2 1/2"	1,180	270	290	1,130	270	290	
	H2.5A	2	(10) 0.131" x 1 1/2"	(10) 0.131" x 1 1/2"	1,270 ²	220	220	1,080	220	220	
	H14	1	(12) 0.131" x 1 1/2"	(13) 0.131" x 21/2"	1,275	725	285	1,050	480	245	
	HTS1613	1	(12) 0.148" x 1 1/2"	(12) 0.148" x 1 1/2"	1,310	755	1255	1,125	755	1255	
SS	LTS1213	2	(12) 0.148" x 1 1/2"	(12) 0.148" x 1 1/2"	1,320 ²	1505	2505	1,110	1505	2505	
1.2	H16	1	(2) 0.148" x 1 1/2"	(10) 0.148" x 1 1/2"	1,370	-		1,180	—	— ·	
	H2.5A	2	(10) 0.131" x 21/2"	(10) 0.131" x 21/2"	1,460 ²	220	220	1,230	220	220	
SS	MTS1213	2	(14) 0.148" x 1 1/2"	(14) 0.148" x 1 1/2"	1,980	1505	2505	1,700	1505	2505	

Truss/Rafter to Masonry/Concrete

				One-	Ply SP Raf	ter/Truss		Two- or Th	ree-Ply SP	Rafter/Tru	uss
	Model No.	Qty. Req.	Application	Fasteners to Rafter/Truss (Total) ⁴	Uplift (160)	F ₁ (160)	F ₂ (160)	Fasteners to Rafter/Truss (Total) ⁴	Uplift (160)	F ₁ (160)	F ₂ (160)
H	HETAL12	1	Block/Concrete	(10) 0.148" x 1 1/2"	1,040	390 ⁷	1,040	(10) 0.162" x 3½"	1,235	3907	1,040
1	META12	1	Block/Concrete	(7) 0.148" x 11⁄2"	1,420	340	770	(6) 0.162" x 31⁄2"	1,450	340	770
META20 Only)	META16, META18, META20, META24, META40	1	Block/Concrete	(8) 0.148" x 1½"	1,450	340	770	(6) 0.162" x 3½"	1,450	340	770
ł	HETA12	1	Block/Concrete	(7) 0.148" x 11/2"	1,455	340	770	(7) 0.162" x 3½"	1,730	340	770
(HETA20 Only)	HETA16, HETA20, HETA24, HETA40	1	Block/Concrete	(9) 0.148" x 1 ½"	1,810	340	770	(8) 0.162" x 3½"	1,810	340	770
ETAL20	HETAL16 HETAL20	1	Block/Concrete	(14) 0.148" x 1½"	1,810	390 ⁷	1,040	(13) 0.162" x 3½"	1,810	3907	1,040
	META12, META16,		Block						1,795		
ETA20	META18, META20,	2 ¹⁰		(10) 0.148" x 1 1/2"12	1,875	680	770	(14) 0.162" x 31⁄2"	0.405	1,285	1,080
Unity)	IVIE IAZ4, IVIE IA40		Concrete						2,435		
SS	HETA12, HETA16,		Block						2,365		
IETA20 Only)	HETA20, HETA24, HETA40	210	Concrete	(10) 0.148" x 11/2"12	1,920	680	770	(12) 0.162" x 3½"	2 560	1,350	1,430
-			Diesk						0.005		
ł	HHETA16, HHETA20,	210	BIOCK	(10) 0.148" x 11/2"12	1,920	680	770	(12) 0.162" x 31/2"	2,300	1,350	1,430
	11121824, 11121840		Concrete	1					3,180		
ł	HHETA16, HHETA20, HHETA24, HHETA40	1	Block/Concrete	(10) 0.148" x 11⁄2"	2,120	3408	770	(9) 0.162" x 3½"	2,120	340 ⁸	770
[DETAL20	1	Block/Concrete	(18) 0.148" x 1 1/2"10	2,480	2,000	1,370		-		

Hip Rafter to Wall Connector

	Model	Mombor	Fa	Fasteners		wable Loads	SPF Allow	SPF Allowable Loads		
	No.	Size	To Truss/Rafter	To Wall	(16 Uplift	60) F ₁	(1) Uplift	50) F ₁		
7	TJC37 (1-85°)	2x4 min.	(6) 0.131" x 11/2"	(6) 0.131" x 1½"	3757	_	3257	_		
7	TJC57 (1-85°)	2x6 min.	(12) 0.131" x 11/2"	(12) 0.131" x 11/2"	7507	_	6457	—		
SS F	HCP21	2x	(6) 0.148" x 11⁄2"	(6) 0.148" x 1 1/2"	590	255	510	220		
SS I	HCP1.811	1¾	(6) 0.148" x 11⁄2"	(6) 0.148" x 11/2"	590	255	510	220		
1	MTSM16	2x	(7) 0.148" x 11⁄2"	(4) ¼" x 2¼" Titen Turbo™3	830	—	715	_		

Rafter Connectors

			Fastener	rs (Total)	DF/SI	P Allowable	Loads	SPF Allowable Loads			
	Model No.	Qty. Reg. ¹⁰	То	То	Uplift	Parallel to	Perp. to	Uplift	Parallel to	Perp. to	
			Truss/Rafter	Plates	(160)	(160)	(160)	(160)	(160)	(160)	
	H2.5T	1	(5) 0.131" x 1 1⁄2"	(5) 0.131" x 1 1/2"	420	135	145	420	135	145	
SS	H2.5ASS11	1	(5) 0.131" x 21⁄2"	(5) 0.131" x 21/2"	440	75	70	380	75	70	
	H1	1	(6) 0.131" x 1 1⁄2"	(4) 0.131" x 21/2"	480	510	190	425	440	165	
	H2.5T	1	(5) 0.131" x 21⁄2"	(5) 0.131" x 21/2"	590	135	145	565	135	145	
	H2.5A	1	(5) 0.131" x 1 ½"	(5) 0.131" x 1 1⁄2"	635 ²	110	110	540	110	110	
	HGA10KT	1	(4) 1⁄4" x 1 1⁄2" SDS	(4) ¼" x 3" SDS	650	1,165	940	500	840	675	
	LTS1213	1	(6) 0.148" x 1 ½"	(6) 0.148" x 1 1⁄2"	660 ²	755	1255	555	755	1255	
	H2.5A	1	(5) 0.131" x 21/2"	(5) 0.131" x 21/2"	730 ²	110	110	615	110	110	
	TSP ⁹	1	(9) 0.148" x 1 ½"	(6) 0.148" x 1 1⁄2"	755	310	190	650	265	160	
SS	H8	1	(5) 0.148" x 1 ½"	(5) 0.148" x 1 ½"	780	95	90	710	95	90	
	SDWC1560012	1	—	—	805 ²	380 ²	225	505	265	190	
	H11Z	1	(6) 0.162" x 2 1⁄2"	(6) 0.162" x 21⁄2"	830	525	760	715	450	655	
	H10A Sloped	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1⁄2"	855	590	285	760	505	285	
	H1	2	(12) 0.131" x 1 1/2"	(8) 0.131" x 21/2"	960	1,020	380	850	880	330	
	H10ASS11	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1/2"	970	565	170	835	485	170	
SS	MTS1213	1	(7) 0.148" x 1 1/2"	(7) 0.148" x 1 1/2"	990	755	1255	850	755	1255	
	H2.5T	2	(10) 0.131" x 21/2"	(10) 0.131" x 21/2"	990	270	290	990	270	290	
	TSP ⁹	1	(9) 0.148" x 1 ½"	(6) 0.148" x 3"	1,015	310	190	875	265	160	
	H10AR	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1⁄2"	1,050	490	285	905	420	285	
	H10A-2	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1⁄2"	1,080	680	260	930	585	225	
	H10A	1	(9) 0.148" x 1 1⁄2"	(9) 0.148" x 1 1/2"	1,105 ²	565	285	1,015	485	285	
	H2.5T	2	(10) 0.131" x 21/2"	(10) 0.131" x 21/2"	1,180	270	290	1,130	270	290	
	SDWC1560012	2	—	—	1,200	685	995	1,045	495	670	
	H2.5A	2	(10) 0.131" x 1 ½"	(10) 0.131" x 1 ½"	1,270 ²	220	220	1,080	220	220	
	H14	1	(12) 0.131" x 1 1/2"	(13) 0.131" x 21/2"	1,275	725	285	1,050	480	245	
	HTS1613	1	(12) 0.148" x 1 1/2"	(12) 0.148" x 1 1/2"	1,310	755	1255	1,125	755	1255	
SS	LTS1213	2	(12) 0.148" x 1 1/2"	(12) 0.148" x 1 1⁄2"	1,320 ²	1505	2505	1,110	1505	250 ⁵	
	H16	1	(2) 0.148" x 1 1⁄2"	(10) 0.148" x 1 1/2"	1,370	—	—	1,180	—	_	
	H2.5A	2	(10) 0.131" x 21/2"	(10) 0.131" x 21/2"	1,460 ²	220	220	1,230	220	220	
SS	MTS1213	2	(14) 0.148" x 1 1/2"	(14) 0.148" x 1 1/2"	1,980	1505	2505	1,700	150 ⁵	2505	

HB Control Con
--

Chapter 6 Roof Sheeting

Typically, corrugated galvanised metal roof sheets are used as the lightweight, affordable, and easy-to-install metal roof sheeting over most buildings. Galvanised metal sheets are generally defined by the gauge: 22ga., 24ga. The higher the gauge number, the thinner the sheet thickness. Galvanised metal consists of a thin layer of zinc anticorrosive coating to protect the inner mild steel metal sheet.

There are other types of durable anticorrosive metal sheets, such as Galvalume. This is where the base metal is protected with a layer of Aluminum (AI), Zinc (Zn) and Silicon (Si). It is similar in appearance to galvanized sheets and has similar durability benefits; however, Galvalume may be more durable in coastal environments.

Roof sheets

Metal roof sheets come in many different proprietary profile shapes, such as those illustrated below:

Figure 8 Examples of different roof sheet profile shapes

Different manufacturers use different layer composition, thicknesses, and profiles to achieve the strength and durability of the metal sheeting. There is no standard industry thickness related to gauge, that is, 24-gauge may refer to 0.45mm thick from one manufacturer and 0.5mm thick from a different manufacturer.

It is important to check that the metal sheeting used on the building is suitable for the environment in which the building is located. Marine and coastal environments may require thicker anti-corrosive protection than buildings located in inland urban or country areas.

Roofing screws

(a)

There are specific sections of gable or hip roofs that attract higher wind pressures (refer to light orange perimeter strips around each face of the roof in image 9 below). The roof sheets should be connected using galvanised or stainless-steel metal screws at appropriate maximum spacings to ensure that the roof sheet does not tear or rip off in high winds. The high wind pressure zones may require that roof screws in these areas are spaced more closely together. Usually, the roof sheet manufacturer specifies the maximum allowable spacing of the screws to ensure the design resistance is achieved.

Figure 9 (a) High pressure zones in gable roofs, (b) High pressure zones in hip roofs

Leak prevention between the roofing screw and roof sheet connection can be achieved by the following:

1. Using roofing screws that have a compressible rubber gasket under the washer to prevent water ingress under the washer; installing the screws properly.

3. Connect the screws through the crest of the corrugated roof sheets. This location will ensure the screw penetration is exposed to less water than the valley of the roof sheet and that the screw head has enough space for the connection. Manufacturers of different roof sheet profiles would specify the correct location and spacing of the roof screws to satisfy wind pressures. Also ensure that roof sheets have adequate lap between sheets, as per the manufacturer's specifications.

Figure 11 Screw connection on roof sheet

4. Use cyclone washers. An example is shown in the figure below.

Chapter 7 Quality Control Checklist

Bibliography

- 1. AON. Weather, Climate & amp; Catastrophe Insight. 2020;78. Available from: http://catastropheinsight.aon.com
- 2. Choices made now are critical for the future of our ocean and cryosphere IPCC [Internet]. [cited 2021 Jan 27]. Available from: https://www.ipcc.ch/2019/09/25/srocc-press-release/
- 3. Chapter 2 Building Performance Further information on building geometry and building performance can be found on Whole Building Design Seismic Design Principles. Available from: https://www.wbdg.org/resources/seismic-design-principles
- 4. Chapter 3 Building Components Masonry Walls Further information and minimum building standards can be found in the 'Building Guidelines based on the OECS 2015 Building Codes'. Available from: <u>https://www.oecs.org/</u>
- 5. Engineers AS of C. Minimum Design Loads and Associated Criteria for Buildings and Other Structures [Internet]. American Society of Civil Engineers; Available from: https://ascelibrary.org/doi/book/10.1061/9780784414248
- 6. Chapter 5 Prescriptive connectors available from Strong-Tie S. High Wind Guide [Internet]. Available from: https://embed.widencdn.net/pdf/plus/ssttoolbox/qdm2sqxtml/F-C-HWG20.pdf?u=cjmyin
- 7. Chapter 6 Roofing Screws Further information can be found on Metal Roof Repair- 5 Common Causes of Metal Roof Leaks. Available from https://www.exteriorproinc.com/blog/metal-roof-repair-5-common-causes-of-metal-roof-leaks
- 8. Chapter 6 Cyclone washers Further information can be found on 'Fastener Requirements For High Wind & Cyclonic Areas'. Available from: https://www.buildex.com.au/technical-advice/high-wind-cyclonic-areas/
- 9. Chapter 7 Quality of the timber Further information can be found on 'Timber Defects'. Available from: http://wiki.dtonline.org/index.php/Timber_Defects
- 10. Annex 1 Wind Speeds Further information can be found on PAHO Caribbean Basin Wind Hazard Maps Aid in Siting of Hospitals. Available from: https://www.paho.org/en/health-emergencies/smart-hospitals/caribbean-basin-wind-hazard-maps-aid-siting-hospitals
- 11. Annex 2 Further information can be found on 'Mechanical properties of wood' accessed from https://www.fs.usda.gov/treesearch/pubs/7149

Annex 1 – Wind Speeds

Relationship between Wind Speeds in Design Codes and Saffir–Simpson scale Hurricane Wind Scale

The hurricane reports from the National Hurricane Center include the Saffir-Simpson Hurricane Categories 1 to 5. This scale is relied on by local emergency management agencies in order to warn the populations of the need to prepare for upcoming severe weather systems. The Saffir-Simpson Hurricane Scale has wide acceptance and popularity. Its five Categories are based on wind speed intensity and barometric pressure at the centre of the storm. The quoted wind speeds determining the various Categories are sustained wind speeds with a 1-minute averaging time at 33 ft over open water. It is understood that the wind speeds categorising the hurricanes are the most intense in the system – typically in the north-east eye wall. Those speeds are not necessarily the ones impacting on any particular island or part of an island.

It is important to note that the wind speeds reported by the National Hurricane Centre are not the same as those determined by researchers specifically for use in the design of structures.

The American Society of Civil Engineers ASCE 7 standard commonly used by engineers for wind-resistant design purposes in the USA and the Caribbean uses a 3-second gust speed at 33 ft above ground in open terrain with scattered obstructions having heights generally less than 30 feet – commonly associated with flat open country and grasslands. This is known as Exposure C. The wind speed thus defined is the Basic Wind Speed for use in structural design.

This section lists basic wind speeds for different return periods across several countries in the Americas. The basic wind speed is used to develop the design wind speeds for building design in the respective countries. The Saffir-Simpson Hurricane Scale wind speeds are also included as a comparison between the basic wind speeds versus Category 5 Hurricane wind speeds.

Table 1.1. Approximate Relationship between Wind Speeds in ASCE 7 and Saffir- Simpson scale Hurricane Wind Scale								
Hurricane	Sustained Speed ove	d Wind er Water	Gust W Speed over	/ind r Water	Gust W Speed ove	/ind er Land		
Category -	mph	m/s	mph	m/s	mph	m/s		
1	74-95	33-42	90-116	40-51	81-105	36-47		
2	96-110	43-49	117-134	52-59	106-121	48-54		
3	111-129	50-57	135-157	60-70	122-142	55-63		
4	130-156	58-69	158-190	71-84	143-172	64-76		
5	>157	>70	>191	>85	>173	>77		

Note: Country wind speeds in red text exceed the minimum wind speed for Category 5 Hurricanes.

Table 1.2. Wind speeds - The Caribbean								
Note: 2019 PAHO wind hazard maps publication(5), same as the OECS Building Code wind speeds (updated in September 2016). When using ASCE 7-10 the following values shall be adopted for the Basic Wind Speed V for Category II Buildings.								
700-year 1700-year								
Location	[mph]	[mph]						
Trinidad (S)	87	110						
Trinidad (N)	128	147						
Isla Margarita	133	152						
Grenada	154	168						
Bonaire	149	156						
Curacao	149	165						
Aruba	146	162						
Barbados	152	169						

Saint Vincent	155	171
Saint Lucia	155	172
Martinique	159	171
Dominica	159	172
Guadeloupe	157	168
Montserrat	161	172
St. Kitts and Nevis	163	170
Antigua and Barbuda	160	168
Saint Martin/Sint Maarten	167	175
Anguilla	165	176
US Virgin Islands	167	176
British Virgin Islands	169	180
Grand Cayman	187	198
Little Cayman/Cayman Brac	178	197
Hispaniola	110-160	120-170
Jamaica	140-160	150-170
Note: The above values are 700-year return period for Cate return period for Category III and IV Buildings. These are "f	egory II Buildings a ailure" wind speed	nd 1700-year Is therefore a

Load Factor of 1.0 does not need to be applied.

	Table 1	L.3. Wind spe	eds - Latin Am	erica
Location	50-year	200-year	700-year	1700-year
Location	[mph]	[mph]	[mph]	[mph]
Cuba			120-170	140- <mark>190</mark>
Dominic Republic			120- <mark>175</mark>	125- <mark>185</mark>
Puerto Rico			150-170	160- <mark>180</mark>
Mexico	56-144	62- <mark>177</mark>		
Guatemala			70-140	
Honduras			70-170	
El Salvador [§]				
Nicaragua	67-125	81-157	70-170	
Costa Rica	62-87			
Panama	72-87			

Brazil	67-112		
Colombia		70-120	
Colombia Archipelago:			
Providencia and Santa Catalina		140	155
San Andrés		125	145
Venezuela (excluding Margarita)		70-130	

[§] El Salvador building code states a basic wind pressure of 30 kgf/m² or 0.3kPa. This is derived from a wind speed of 15.4 m/s or 34.6 mph, however neither the averaging period nor the return period are identified.

Annex 2 – List of Hardwoods and Softwoods

Types of Softwoods and Hardwoods that are suitable for use in the designs illustrated in this guide are listed here.

	Softwood	
Material	Higher strength	Lower strength
Cedar	Eastern red	Atlantic white
	cedar	
	Incense	Northern white
	Port-Orford	Western
		redcedar
	Yellow	
Pine	Jack	Eastern white
	Loblolly	Lodgepole
	Longleaf	Ponderosa
	Pitch	Red
	Pond	Spruce
	Sand	Sugar
	Shortleaf	Western white
	Slash	
	Virginia	

Notes:

Design stresses considered for the higher strength softwood are:

- Bending stress parallel to grain, Sp = 21.2 N/mm²
- Shear stress parallel to grain, Sv = 5.9 N/mm²

Design stresses considered for the lower strength softwood are:

- Bending stress parallel to grain, Sp = 16.5 N/mm²
- Shear stress parallel to grain, Sv = 4.8 N/mm²

MaterialHigher strengthLower strengthCherryBlackMapleSugarBigleafMapleSugarBlackRedSilverOak, redBlackLaurelCherrybarkNorthern redPinSouthern redScarletWillowWaterOak, whiteChestnutLiveOvercupPostSwamp chestnutSwamp white		Hardwood	
CherryBlackMapleSugarBigleafBlackBlackBlackRedCherrybarkSouthern redPinSouthern redScarletWillowWaterElsestnutLiveOvercupPostSwamp chestnutSwamp whiteSwamp white	Material	Higher strength	Lower strength
MapleSugarBigleafBlackBlackRedSilverOak, redSilverBlackLaurelCherrybarkNorthern redPinSouthern redScarletWillowWaterVillowDak, whiteChestnutLiveOvercupPostSwamp chestnutSwamp whiteI	Cherry	Black	
BlackImage: Product of the stress of t	Maple	Sugar	Bigleaf
RedOak, redBlackLaurelOak, redBlackLaurelCherrybarkNorthern redPinSouthern redScarletWillowWaterUareOak, whiteChestnutLiveOvercupPostSwamp chestnutSwamp whiteUare			Black
Oak, redBlackLaurelOak, redBlackLaurelCherrybarkNorthern redPinSouthern redScarletWillowWaterWaterOak, whiteChestnutLiveOvercupPostSwamp chestnutSwamp whiteSwamp white			Red
Oak, redBlackLaurelCherrybarkNorthern redPinSouthern redScarletWillowWaterOak, whiteChestnutLiveOvercupPostSwamp chestnutSwamp white			Silver
CherrybarkNorthern redPinSouthern redScarletWillowWaterVolumeOak, whiteChestnutBurLiveOvercupPostSwamp chestnutSwamp whiteSwamp white	Oak, red	Black	Laurel
PinSouthern redScarletWillowWaterOak, whiteChestnutBurLiveOvercupPostSwamp chestnutSwamp white		Cherrybark	Northern red
Scarlet Willow Water Water Oak, white Chestnut Bur Live Overcup Post Swamp chestnut Swamp white Swamp white		Pin	Southern red
WaterOak, whiteChestnutBurLiveOvercupPostSwamp chestnutSwamp white		Scarlet	Willow
Oak, whiteChestnutBurLiveOvercupPostSwamp chestnutSwamp whiteImage: Swamp white		Water	
Live Overcup Post Swamp chestnut Swamp white	Oak, white	Chestnut	Bur
Post Swamp chestnut Swamp white		Live	Overcup
Swamp chestnut Swamp white		Post	
Swamp white		Swamp chestnut	
		Swamp white	
White		White	
Walnut Black	Walnut	Black	

Notes:

Design stresses considered for the higher strength hardwood are:

- Bending stress parallel to grain, Sp = 27.3 N/mm²
- Shear stress parallel to grain, Sv = 9.3 N/mm²

Design stresses considered for the lower strength hardwood are:

- Bending stress parallel to grain, Sp = 22.3 N/mm²
- Shear stress parallel to grain, Sv = 8.1 N/mm²

Annex 3 – Sample Calculation

The sample calculations in this annex are for reference by civil/structural engineers who may be using this guide.

Project: Hurricane Resis	tant Buildi	ngs				Date:		12-Ji	ul-21
Engineer: Shalini Jagnar	rine-Azan					Page:	1	of	5
Description: Gable Roof_1	80mph_Ex	posure B							
Design reference code: ASC	E 7-16								
Input all items in red.									
Wind Loads based on Categ	ory 5 Hurric	anes: 3-s	ec gust wind	speeds	over land: >	>173mph	(77m/	's)	
Item description:	Value	Unit	Reference	Unit		No	otes		
Basic wind speed, V	80.5	m/s =	180	mph	BASIC WIND at 33 ft (10 n (see Section with Section) SPEED, V: 1) above the 26.7.3) as d 26.5.1.	I hree-s ground letermir	second in Expo ned in a	gust speed osure C accordance
Building description:									
Enclosed			26.2		BUILDING, E total area of positive exte sq ft (0.37 m/ whichever is for each wall 0.01Ag; or 4 where Ao = tu receives pos external pres Ag = the gros identified, in t	NCLOSED: . openings in e rnal pressure 2) or 1% of th smaller. This by the follow sq ftð0.37 m otal area of c itive sure, in ft2 (n s area of tha ft2 (m2).	A buildi each wa e, less t he area condit ving equ 2Þ; wh opening m2); an at wall i	ng that all, that han or a of that ion is e uation: <i>i</i> ichever is in a v id n which	has the receives equal to 4 t wall, expressed Ao < r is smaller; wall that
Low-rise			26.2		BUILDING, L enclosed buil conditions: 1 to 60 ft (18 m exceed least	OW-RISE: E ding that con . Mean roof h n). 2. Mean ro horizontal di	Enclose nplies v neight h oof heig mensio	d or pa vith the h less th ght h do n.	rtially following nan or equal bes not
Building category	Ш				Table 1.5-1, /	ASCE 7-16 i	n hurric	ane pro	one region
Importance factor	1.00		Table 6.1		Buildings and could pose a	l other struct substantial r	ures, th isk to h	ne failur numan li	e of which ife
Site Location:									
Surface roughness	В		26.7.2		Surface Roug wooded area closely space single-family	ghness B: Ur s, or other te ed obstructio dwellings or	ban an errain w ns that larger	d subur ⁄ith num have tl	ban areas, nerous, he size of
Exposure	В		26.7.3		Exposure B: mean roof he Exposure B s roughness, a Roughness E	For buildings ight less that shall apply wh s defined by 3	or othe n or equ nere the Surfac	er struc ual to 3 e groun e	tures with a 0 ft (9.1 m), d surface
Wind Directionality factor, Ko	0.85		Table 26.6-1		main wind for	ce-resisting	system	۱	
Topographic Effects:					To calculate locations	different Kzt	for diffe	erent to	pographic
Topographical factor, Kzt	1		26.8		Kzt = (1+ł	K1K2K3)2	Taker calcul templa	n for ea lation ir ate	se of hthis
					Gust-Effect F	actor. The o	ust-effe	ect fact	or for a rigid

Project: Hurricane Resis	tant Buildi	ngs				Date:	12-	Jul-21		
Engineer: Shalini Jagnai	rine-Azan					Page:	2 of	5		
Description: Gable Roof_1	80mph_Ex	posure B				- ŭ				
·	· -									
Building Geometry:	Value	Unit	Reference	Unit		Notes				
Structure height, h	10	m =	33	ft	Assume max.	3-storeys				
Roof angle	20	degrees			Use this as th roofs, 4' 3/8":	ne minimum re : 1' (4.38:12)	commende	d pitch for all		
Building length, L	24.5	m =	80.4	ft	Use maximun	n building widt	h & length a	as 80ft, 24.5r		
h/L =	0.41									
Wind Velocity pressure. az =	0.613 Kz. I	Kzt. Kd. K	e. V2 (N/m2))						
hence, qz = qh =	2.43	kN/m2								
Important Note:										
26.12.3 Protection of Glazed	Openings.	Glazed op	enings in Ri	sk Cateq	ory II, III, o	r IV buildin	gs locate	ed in		
hurricane-prone regions shal	l be protect	ed as spe	cified in this	section.			0			
26.12.3.1 Wind-Borne Debris	s Regions, (Glazed op	enings shall	be prote	cted in the f	followina:				
1. Within 1 mi (1.6 km) of t	he coastal r	nean high	water line w	where the	basic wind	speed is e	equal to c	or greater		
2 In grass where the basis		ط أم مصيما	to or groate	r than 11	0 mile (62 m	~ 6)				
	wind spee	u is equal	to or greate		0 111/11 (03 1	175).				
Internal pressure Coefficie	nt		Table 26.13	3-1	for enclos	ed building				
	0.18					Ŭ				
coefficient, GCpi	-0.18									
WIND LOADS ON BUILDIN	GS: MAIN \		RCE RESIS	TING SY	STEM (EN)		ROCED	URE)		
Ref Chapter 28					(Referenc		
Wind pressure, p = qh.[GCpt	f - GCpi]	N/m2						28.3-1		
Building Geometry Assum	ptions:									
Length, L =	24.5	m =	80.4	ft						
Width, w =	9.8	m =	32.2	ft	Assume w	idth is half	length			
Width of edge zones E, a = 0).4h =		4	m or a =	: 10% (w) =	0.98	m			
But a cannot be less than, 49	% of w =		0.392	m or a =	:	0.98	m			
=> width of edge pressure	zones, 2E	& 3E, a =	0.98	m						
Width of edge higher wind pr	essure zone	es. for clo	ser spacing	roof shee	t connecto	rs. a:				
Building width (m)	a (m)	,				,				
24.5	2.45									
19.6	1.96									
18.4	1 84									

Project: Hurricane Resis	stant Buildi	ngs				Date:	12-J	ul-21			
Engineer: Shalini Jagna	rine-Azan					Page:	3 of	5			
Description: Gable Roof_1	80mph_Ex	posure B									
		-									
External pressure	Roo	f zones, fo	or 20deg ang	le							
coefficients	2	2E	3	3E							
coefficient GCnf	-0.69	_1 07	-0.48	-0 69	Load Cas	e A - wind	Page: 3 of 5 Page: 3 of 5 A - wind direction - - - Hard of the state of buildir - - - B - wind direction - - - A - wind direction - - - B - wind direction - - - A - wind direction - - - 0.67 kPa - - -3.04 kPa - -				
	-0.00	-1.07	-0.40	-0.00	predomin	antly on loi	tly on long side of building B - wind direction				
coefficient CCnf	0.60	1 07	0.37	0.53	Load Cas	e B - wind	B - wind direction				
coefficient, GCpi	-0.09	-1.07	-0.37	-0.55	predomin	antly on sh	ntly on short side of bu				
	-0.87	-1.25	-0.66	-0.87	Load Cas	e A					
	-0.87	-1.25	-0.55	-0.71	Load Cas	e B					
					-						
wind pressure p (kN/m2)	-2.11	-3.04	-1.60	-2.11	Load Cas	e A					
	-2.11	-3.04	-1.34	-1.72	Load Cas	еВ					
Use maximum pressure in	nes 2 and 3,	p =	-2.11	kN/m2 =	-44.1	psf					
Use maximum pressure in	edge roof	area, zor	nes 2E and 3	E, pe =	-3.04	kN/m2 =	-63.4	psf			
Loading:											
Dead load for timber roof, D:			- 6								
Light frame wood roof with b	oard ceiling,	waterpro	ofing and	14	psf =	0.67	kPa				
	eeing –	20	pof -	0.06	kDo	Dof IDCO	0010 TH 1	607 1			
Force due to wind proceure	۱۸/۰	20	psi –	0.90	кга	Rel. IDC2		007.1			
Consider high pressure edge		ritical dee	ian load W -	63.4	nef -	3.04	kPa				
Consider nigh-pressure edge			igii ioau, w -	-03.4	psi –	-3.04	кга				
Basic Load Combinations	•	nsf	kPa (kN/m2)								
Load case 1.	D + I r	34.0	1.63								
Load case 2:	D + 0.6W	-24.0	-1 15								
	D + 0.75Lr	21.0	0.00								
Load case 3:	+ 0.45W	0.5	0.02								
Load case 4:	0.6D + 0.6W	-29.6	-1.42								
Most onerous load case for o	design chec	k of timbe	r members, F	-29.6	psf =	-1.42	kPa				
Timber rafter check:											
Material:											
Caribbean pitch pine = GS C	18 strength	class or S	SS C27								
Material properties:											
Bending parallel to grain, Sp	=	27.3	N/mm2								
Shear parallel to grain, Sv =		9.25	N/mm2								
Gable Roof Geometric prope	rties based	on max. r	oof dimensio	ns and m	in. pitch:						
Recall max building length (and width 	(W) =	24.5	m =	80.4	l#					

Project: Hurricane Resis	tant Buildi	ngs				Date:		12-Jı	ul-21
Engineer: Shalini Jagnai	rine-Azan					Page:	4	of	5
Description: Gable Roof_1	80mph_Ex	posure B							
Check timber rafter size:									
rafter depth, H =	150	mm x	width, B =	50	mm				
Dressed timber section, h =	144	mm x	width, b =	44	mm				
Material properties of timber:									
Bending parallel to grain, Sp	=	27.3	N/mm2						
Shear parallel to grain, Sv =		9.3	N/mm2						
wet exposure coefficient, k2 :	=	0.9							
duration load factor, k3 =		1.75	for D + L +	W in 3-s	ec gusts				
depth modification factor, k7	=	1.08	k7 = (300/h))^0.11 for	beam dep	ths <300	mm		
Section modulus. $Z = (1/6) x$	BH^2 =		187500	mm3					
Section modulus based on d	ressed timb	er size. S	152064	mm3					
UDL design load on rafter. w	= P x Sraf =	=	0.60	kN/m =	40.8	Lb/ft			
Allowable bending stress, sp	= Sp xk2 xk	3 xk7 =	46.61	N/mm2					
Allowable bending strength N	/lp = sp x Sx	(=	7.1	kNm	(dressed s	size)			
Actual bending $M = w I_{me}^{2}/8$	=		7 1	kNm	use zone 2 as rafter length critica			tical	
Actual bending $<$ allowable	hending s	trenath	member siz			_, ao rait		garon	
	bonang e	a ongai,							
Allowable shear stress_sv =	Sv xk3 =	16 19	N/mm2						
Shear capacity $Sy = sy x (2)$	3 bd =	68.38	kN	[Note: vr	nax = 3/2	v/bd1			
Actual shear on rafter $V = w$	(2 =	2.90	kN =	652.6	lbs	.,]			
Actual shear < allowable s	hoar strong	th OK		002.0	100				
	lical streng								
Timber purlins check:									
Material to be same as rafter									
Length of purlin. Lour = rafter	spacing =	0.42	m =	1.4	ft				
Let spacing of purlins. Spur =	=	1	m =	3.3	ft				
Effective wind area =		0.42	m2 =	4.52	sa. ft				
Check timber purlin size:					•				
purlin depth, H =	50	mm x	width, B =	50	mm				
Dressed timber section, h =	44	mm x	width, b =	44	mm				
			,						
Material properties of timber:									
Bending parallel to grain, Sp	=	27.3	N/mm2						
Shear parallel to grain, Sv =		9.3	N/mm2						
wet exposure coefficient, k2 :	-	0.9							
duration load factor, k3 =		1.75	for D + L +	W in 3-s	ec gusts				
depth modification factor, k7	' =	1.24	k7 = (300/h))^0.11 for	beam dep	ths <300	mm		
Section modulus. $Z = (1/6) x$	BH^2 =		20833.3	mm3					

Project: Hurricane Res	istant Build	ings				Date:		12-Jı	ul-21
Engineer: Shalini Jagn	arine-Azan					Page:	5	of	5
Description: Gable Roof	180mph Ex	posure B				Ŭ			
Allowable shear stress, sv :	= Sv xk3 =	16.19	N/mm2						
Shear capacity, Sv = sv x (2	2/3. bd) =	20.89	kN	[Note: vr	max = 3/2.	v/bd]			
Actual shear on rafter, V =	$wL_{pur}/2 =$	0.30	kN =	67.0	lbs	_			
Actual shear < allowable	shear stren	qth, OK							
Instructions: How to use	the spreads	sheet							
Step 1: Please change	roof width	and	timber stres	ses	in the calc	ulation			
Step 2: Adjust the	rafter depth	in the cal	culation until	bending	passes i.e	. "Membe	er size	OK"	
Step 3: Copy the	rafter spacing	and	uplift	result in	the calcula	ation into	the co	orrect	table be
A B "									
Summary Results	• •	4 - 0	0.60						
Gable Roof	width =	15.3m (5	Oft)	_					
Min. pitch =	20degs		Exposure:	В					
50x50 purlins	Max. Spac	ing (mm)	1000	Uplift =	0.8kN (18	Olbs)			
Material:	Hardwood	(higher str	rength)	Sp: 27.3	MPa, Sv: 9).25MPa			
Rafter size depth x width	Spacing (mm)	Spacing (in)	Uplift Force (kN)	Uplift Force (lbs)					
150 x 50	600	24	3.47	780					
200 x50	1050	41	6.07	1365	-				
250 x 50	1630	64	9.42	2118					
Material:	Hardwood	(higher str	ength)	Sp: 22.3	Mpa, Sv:	8.06 Mpa			
Rafter size depth x width	Spacing (mm)	Spacing (in)	Uplift Force (kN)	Uplift Force					
150 x 50	490	19	2 83	636					
200 x50	860	34	4.97	1117	1				
250 x 50	1330	52	7.69	1729	1				
Exposure Category	В	Width	18.3m (60ft	t)					
50x50 purlins	Max. Spac	i 1000	Uplift =	0.8kN (1	80lbs)				
Material:	Hardwood	(higher str	rength)	Sp: 27.3	MPa, Sv: 9	.25MPa			
Rafter size depth x width	Spacing (mm)	Spacing (in)	Uplift Force (kN)	Uplift Force					
450 - 50	· /		· /	(lbs)					
150 X 50	420	1/	2.9	052					
200 X50	/30	29	5.05	1135	-				
∠30 X 50	1140	45	00.1		1				