Assessment of artemisinin resistance of *Plasmodium falciparum* malaria in Suriname

Stephen G.S. Vreden, MD PhD
Foundation for Scientific Research
Suriname (SWOS)

XIV Annual AMI/RAVREDA meeting Rio de Janeiro 2015
Malaria in Suriname

- Numbers are continuously decreasing
 - (2015 so far only 6 locally transmitted cases (4 P.v, 2 P.f))

- Threat of resurgence due to decreasing sensitivity?
- Assessing efficacy by traditional efficacy studies currently virtually impossible
Challenges for efficacy studies in Suriname

- Low number of cases, virtually only gold miners
- Population of gold miners is not available for 28 days follow up
- Assessing day 3 parasitaemia, difficult but feasible
Working definition of artemisinin resistance

- Discussed during the GPARC process and at the Fogarty Internal Center and NIH meeting in November 2010
- WHO is using **working definition** as below:
 - an increase in parasite clearance time, as evidenced by greater than 10% of cases with parasites detectable on day 3 following treatment with an ACT (suspected resistance); or
 - a treatment failure as evidenced by presence of parasites at day 3 and either persistence of parasites on day 7 or recrudescence after day 7 of parasites within 28/42 days, after treatment with an oral artemisinin-based monotherapy, with adequate blood concentration (confirmed resistance).
Figure 7 The proportion of patients with fully artemisinin sensitive *P. falciparum* infections who are slide positive on day 3 are shown with 95 and 99% confidence intervals. From Stepniewska et al with permission [45].
Assessment of Day 3 Parasitaemia in patients treated with Coartem

<table>
<thead>
<tr>
<th></th>
<th>2005/2006 ($n = 45$)</th>
<th>2011 ($n = 48$)</th>
<th>$^a p < 0.001$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 2 Parasitaemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of positive cases (percentage)</td>
<td>9 (20 %)</td>
<td>36 (75 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2005/2006 ($n = 45$)</th>
<th>2011 ($n = 48$)</th>
<th>$^a p < 0.001$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 3 Parasitaemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of positive cases (percentage)</td>
<td>1 (2.2 %)</td>
<td>15 (31.3 %)</td>
<td></td>
</tr>
</tbody>
</table>

a Fisher’s Exact test

Note: All patients followed until day 28 had cleared their parasites.
Parasite clearance rate

- Parasite clearance rate: $\frac{d(\text{parasite density})}{d(t)} = C$; linear association

Figure 1 Two *P. falciparum* parasite clearance curves with identical therapeutic responses illustrating the dependence of the parasite clearance time on pre-treatment parasite density.
Parasite Clearance Estimator (PCE)

Figure 2 The effect of lag phase and tail exclusion on the calculation of the clearance rate constant.

Flegg et al. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator Malaria Journal 2011, 10:339
More than 10% of patients with a parasite clearance half-life of > 5 h.

WHO definition for resistance to artemisinins assessed by P.C.E.
Protocol for Parasite clearance study 2013/14

• Our study in 2011 was conducted with Coartem (artemether/lumefantrine)

• Artemether is not available as a single agent.

• Therefore we used artesunate
Patients with *P. falciparum* mono-infection.

Parasitaemia: 200 - 10 000/µl

Artesunate 4 mg/Kg OD for 3 days, followed by mefloquine and primaquine after day 3.

Assessment of parasitaemia every 8 h until clearance of parasites, thereafter on day 7, 14, 21, 28 (if still available for the study).
Results study 2013/14

• 45 Patients enrolled

• 38 Patients evaluable

• Withdrawn: 7 patients (wrong inclusion, protocol violation, refusal to continue)
Characteristics of enrolled subjects: Origin

- Fr. Guyana: 36 patients
 - Eau Claire 14,
 - Sophie 15,
 - Pedi Limao 3,
 - Cacao 2,
 - Marrodeira 2.
- Guyana: 4 patients (3 Elash, 1 Aramu)
- Suriname: 3 patients (Benzdorp)
- Unknown: 2 patients
Characteristics of enrolled patients:
age/sex

- All adults (>18 years)
- Males: 25 females: 20
Follow up

- Follow up beyond day 3: 38

- Follow up until day 28: 8 (All ACPR)
Results (c’td)

- 22 Patients parasitaemic on day 2 (57.9 %)
- 3 Patients parasitaemic on day 3 (7.9 %)

- All patients followed until day 28 had cleared the parasite

- Mean initial parasitaemia: 9.635,62 par./μL
- (In study of 2011: 10.003.92 par./μL)
Parasitaemia half-life using WWARN parasite clearance estimator

- 20 patients ≤ 5.5 h
- 19 patients > 5.5 h (48.7 %)
- 7 patients > 7 h (17.9 %)
- 2 patients > 10 h
Figure 1: Stylised graphs showing the distribution of parasite clearance half lives for two populations: population B shows evidence of prolonged clearance, when compared to population A.
Distribution of slope half life

Figure 4: Distribution of slope half life
Conclusions artemesunate study:

- Day 3 parasitaemia 7.9%
 - (Coartem study in 2005 2% and in 2011: 31%)

- Day 2 parasitaemia 57.9%
 - (Coartem study in 2005: 20% and in 2011: 75%)

- >5 h parasite clearance half-life: 48.7%
 - (WHO threshold 10%)

XIV Annual AMI/RAVREDA meeting Rio de Janeiro 2015
A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

Frédéric Arieux1,2, Benoit Witkowski3, Chanaki Amaratunga4, Johann Beghain1,2, Anne-Claire Langlois1,2, Nimol Khim3, Saorin Kim3, Valentine Duru3, Christiane Bouchier5, Laurence Ma5, Pharth Lim3,4,6, Rithea Leang6, Socheat Duong6, Sokunthea Sreng6, Seila Suon6, Char Meng Chhou6, Denis Mey Bout7, Sandie Ménard8, William O. Rogers9, Blaise Genton10, Thierry Fandeur1,3, Olivo Miotto11,12,13, Pascal Ringwald14, Jacques Le Bras15, Antoine Berry8, Jean-Christophe Barale1,2, Rick M. Fairhurst4, Françoise Benoit-Vical16,17, Odile Mercereau-Puijalon1,2 & Didier Ménard3
Figure 4 | Parasite clearance half-lives.

a, Correlation of parasite clearance half-lives and K13-propeller alleles for parasite isolates in Pursat and Ratanakiri in 2009–2010. Wild-type parasites have shorter half-lives (median 3.30 h, IQR 2.59–3.95, n = 72) than C580Y (7.19 h, 6.47–8.31, n = 51, $P < 10^{-6}$, Mann–Whitney U test), R539T (6.64 h, 6.00–6.72, n = 6, $P < 10^{-6}$) or Y493H (6.28 h, 5.37–7.14, n = 21, $P < 10^{-6}$) parasites. The half-life of C580Y parasites is significantly longer than that of Y493H parasites ($P = 0.007$).

b, Correlation of
Assessment of ‘K13’ mutations in isolates from the 2013/14 study in Suriname

- Carried out by CDC, Atlanta

- In none of the isolates the K13 mutation has been detected.
Summary
Artesunate mefloquine study 2013/’14

- This combination therapy is still highly efficacious in the treatment of *P. falciparum* malaria in our region.

- Day 3 parasitaemia rate is lower than 10 %.

- The 48.7 % rate of parasite half life > 5.5 h suggests a reduced sensitivity to artesunate.

- K13 mutation was not found in our samples.

- Molecular studies looking for other mutations are underway.
Acknowledgements

WHO Geneva, for funding of the study
Dr. Kumar V. Udhayakumar, CDC, Atlanta, for molecular assessments
Dr. Kasia Stepniewska, WWARN, for help with calculation of clearance half life

XIV Annual AMI/RAVREDA meeting Rio de Janeiro 2015
Study collaborators and volunteers

- Prof. Malti R. Adhin, ADEK University, Suriname
- Mr. Jeetendra K. Jitan, Bsc, Ministry of Health, Suriname
- Dr. Pascal Ringwald, WHO, Geneva
- Lab technicians, fieldworkers, administrative staff
- The patients, who volunteered to participate

XIV Annual AMI/RAVREDA meeting Rio de Janeiro 2015
Thank You!