Iniciativas de la OMS en Vigilancia Integrada de la Resistencia a los Antimicrobianos

Jorge Matheu

Departamento de Inocuidad de los Alimentos, Zoonosis y Enfermedades de Transmisión Alimentaria

Una Salud

El uso de antimicrobianos en animales (y plantas) para consumo humano puede facilitar el desarrollo de resistencia bacteriana y ser diseminada al humano a través de la cadena alimenticia

Grupo Asesor en Vigilancia Integrada de la Resistencia a los Antimicrobianos (AGISAR)

- Creado en 2008, re-definida en 2014
- Mandato en minimizar el impacto de la RAM asociada al uso de antimicrobianos en animales de consumo humano
- 36 expertos en RAM: microbiologos, veterinarios, clínicos, epidemiologos
- ToR para 2015-2019 alineados para apoyar la implementación del Plan de Acción Global en RAM

Objetivos de AGISAR: Apoyar a la OMS en...

- La contención de la RAM en la cadena alimenticia
- Fortalecimiento de capacidades para la Vigilancia Integrada de RAM
 - Monitoreo del uso de antimicrobianos
 - Lista de Antimicrobianos Criticamente Importantes en la medicina humana (CIA list)
 - Actividades tripartitas en RAM entre FAO/OIE/WHO and Codex Alimentarius activities on AMR

Actividades AGISAR

- Marco estratégico de cinco años: 5 Grupos de trabajo
 - 1. Gestión del conocimiento y comunicación
 - 2. Antimicrobianos Criticamente Importantes (CIA list)
 - Uso óptimo de antimicrobianos en la producción alimentaria (Colaboración Tripartita)
 - 4. Métodos de Laboratorio para la determinación de la susceptibilidad antimicrobiana
 - 5. Integración y análisis de datos
- Fortalecimiento de capacidades en los Estados Miembros
 - Protocolos y orientación
 - Talleres de capacitación
 - Proyectos piloto en VI

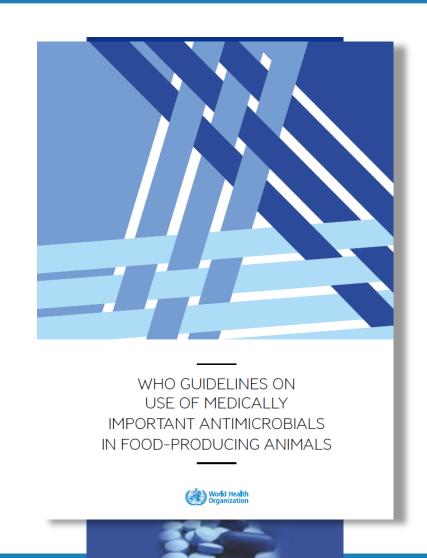
Fortalecimiento de capacidades para la Vigilancia Integrada de la RAM

Aplicación del enfoque "Una Salud"

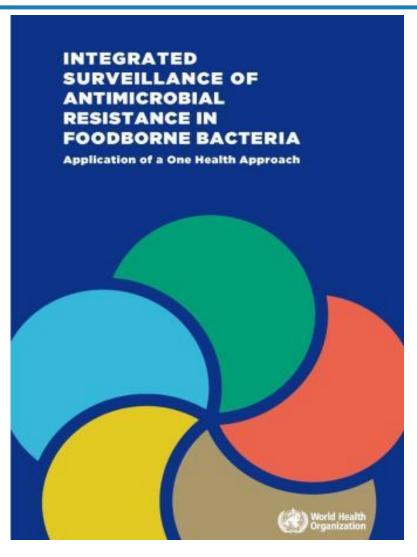
ON ANTIMICROBIAL RESISTANCE

Strategic Objective 2

Necesidad de la Vigilancia Integrada de la RAM


- Information on: the incidence, prevalence, range across pathogens and geographical patterns related to antimicrobial resistance is needed to be made accessible in a timely manner in order to guide the treatment of patients; to inform local, national and regional actions; and to monitor the effectiveness of interventions;
- Understanding how resistance develops and spreads, including how resistance circulates within and between humans and animals and through food, water and the environment, is important for the development of new tools, policies and regulations to counter antimicrobial resistance;

Orientación de OMS para la Vigilancia Integrada de RAM


El grupo AGISAR

- Desde 2008, han asesorado el diseño para la implementación de la vigilancia integrada de RAM
 - Monitoreo en los sectores Humano, animal, alimentos y ambiente
 - Originalmente, enfocado en la armonización de métodos en regiones desarrolladas
 - Ahora, enfocada en establecer el sistema en países en desarrollo
- Además, la actualización de la lista de Antimicrobianos Criticamente Importantes para la medicina humana y la Guía recien lanzada

La orientación de OMS para Vigilancia Integrada (Edición revisada)

- Monitoreo/Vigilancia de la resistencia
- Monitoreo/Vigilancia del uso
- Hacia un análisis y reporte integrado completo

Vigilancia de la RAM

Elementos de un sistema de Vigilancia Integrada de la RAM

A. Muestras:

Humanas

Alimentos en venta

Animales de consumo humano

B. Bacterias a vigilar

Bacterias relacionadas a la cadena alimentiicia

Otras bacterias

C. Diseño de muestreo

Fuente de las muestras

Información de la muestra

Método y tamaño muestral

D. Metodologías de laboratorio

Cultivo e identificación bacteriana

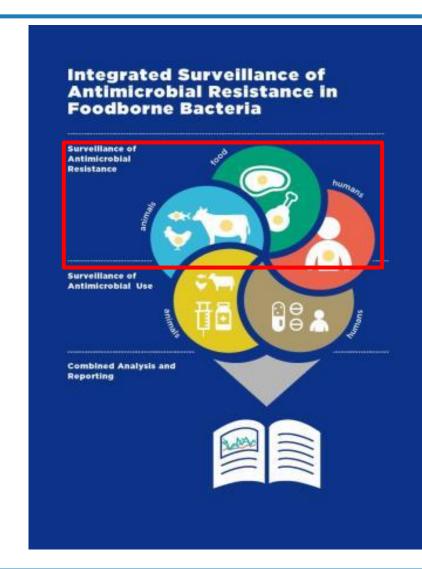
Caracterización de aislamientos

PSA estandarizada

Control de Calidad

Antimicrobianos sugeridos para la vigilancia

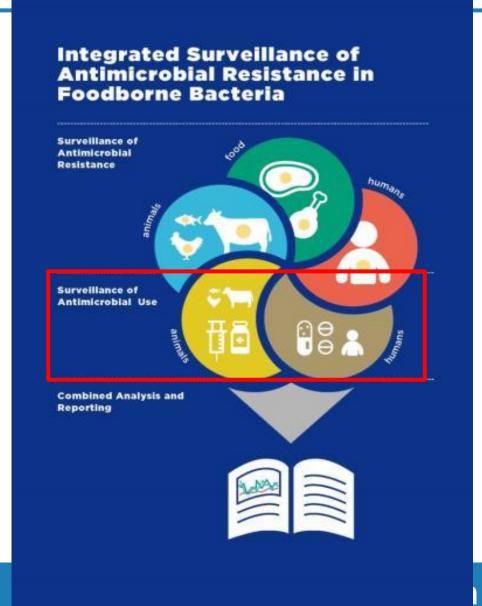
E. Manejo, análisis y reporte de datos

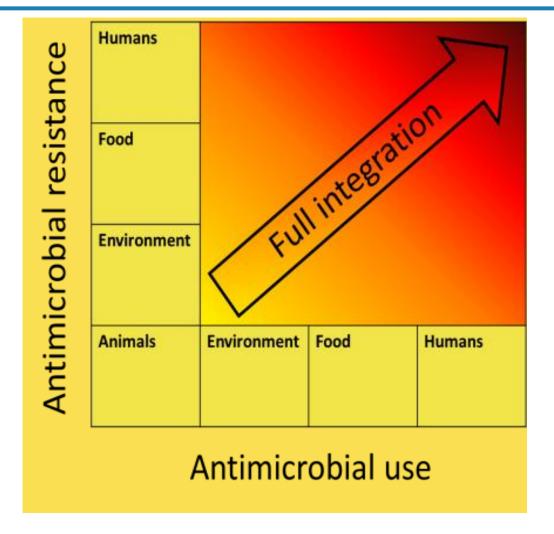

Set de datos mínimos

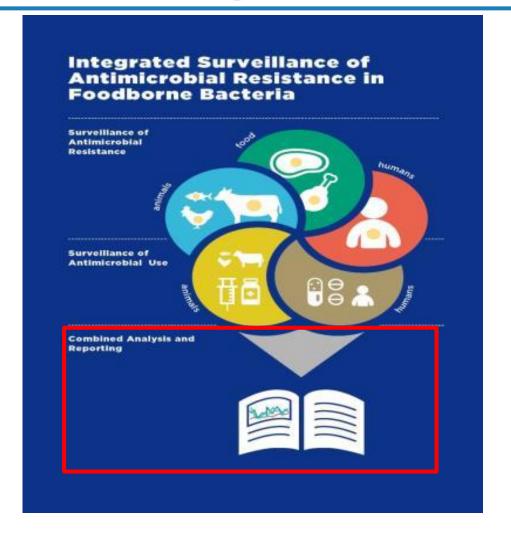
linterpretación de la PSA

Reporte y presentación de datos

F. Anexos


Intrpretación de PSA, Control de calidad, criterios intrepretativos de CLSI y EUCAST, uso de WGS


Vigilancia del uso de Antimicrobianos


Application of surveillance data	Awareness raising	Document the situation	Evaluation of management measures	Integrated analysis with AMR data	Bench- marking
Level/type of data	At country level				
Humans					
Overall national antimicrobial consumption	Yes	Yes	Yes	Yes	Yes
National consumption per healthcare sector (community and hospital)	Yes	Yes	Yes	Yes	Yes
National consumption by gender/age	Yes	Yes	Yes	Yes	Yes
Antimicrobial consumption and use in all/representative sample of healthcare facilities	Yes	Yes	Yes	Yes	Yes
Antimicrobial consumption and use in a limited number of healthcare facilities	Yes	No*	No*	No*	No*
		Animals			
Overall national antimicrobial consumption	Yes	Yes	Yes	Yes	Yes
National antimicrobial consumption by animal species	Yes	Yes	Yes	Yes	Yes
National antimicrobial consumption by repartition**	Yes	Yes	yes	yes	yes
Antimicrobial consumption and use in all/representative sample of farms overall or within a production sector (e.g., poultry farms)	Yes	Yes	Yes	Yes	Yes
Antimicrobial consumption or use in a limited number of farms (or veterinary clinics)	Yes	No*	No*	No*	No*

Integración completa: Resistencia y Uso de antimicrobianos en humanos y animales

Los objetivos estratégicos del PAG en RAM

- Mejorar el conocimiento y comprensión de la RAM a través de educación y capacitación
- 2 Fortalecer el conocimiento y evidencia a través de la vigilancia e investigación
- 3. Reducir la incidencia de infecciones a través de medidas efectivas de higiene y de control y prevención de infecciones
- 4. Optimizar el uso de antimicrobianos en la salud humana y animal
- Asegurar la sostenibilidad de la inversión a través de investigación y desarrollo

Fortalecimiento de las capacidades en los Estados Miembros

 Tiene como objetivo desarrollar la capacidad nacional para implementar la vigilancia integrada de AMR a través de:

Desarrollo de protocolos, módulos de orientación

Cursos de capacitación

Provectos niloto (1 o 2 años)

Proyectos Piloto AGISAR

Objetivos específicos

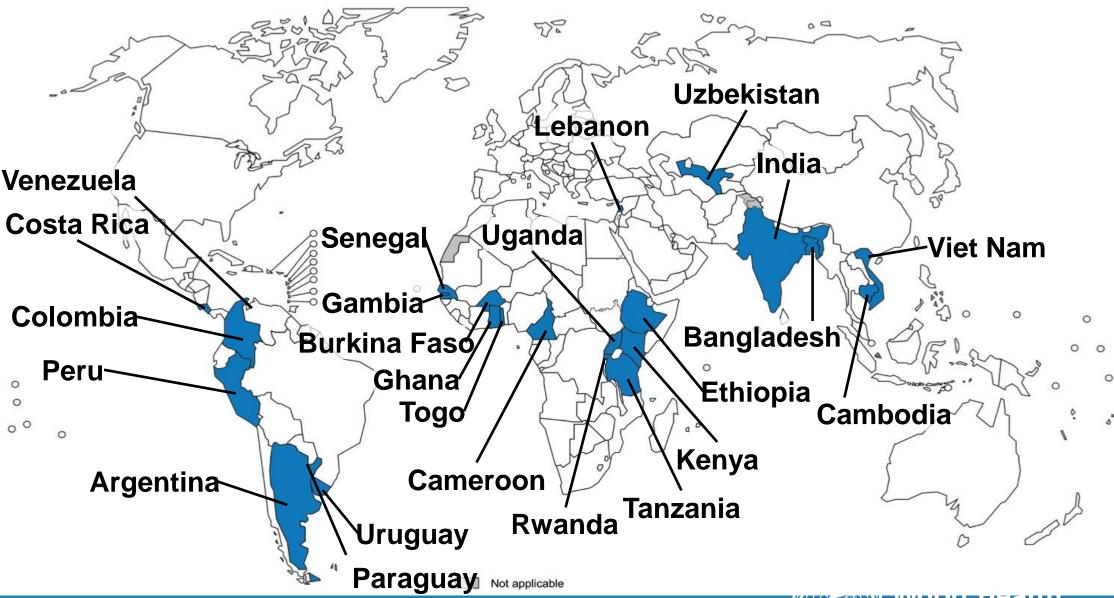
- Mayor conciencia y / o compromiso para la prevención y el control de las enfermedades transmitidas por los alimentos y la contención de la RAM
- Mejor prevención y control de ETA's incluyendo RAM en la cadena alimenticia
- Incrementar las sinergias con otras iniciativas existentes en los país
- Mejorar la detección y notificación temprana
- Fortalecer la habilidad para identificar tendencias en RAM
- Mejorar el conocimiento de las asociaciones entre RAM y uso de drogas en sectores humanos o animales

Resultados esperados

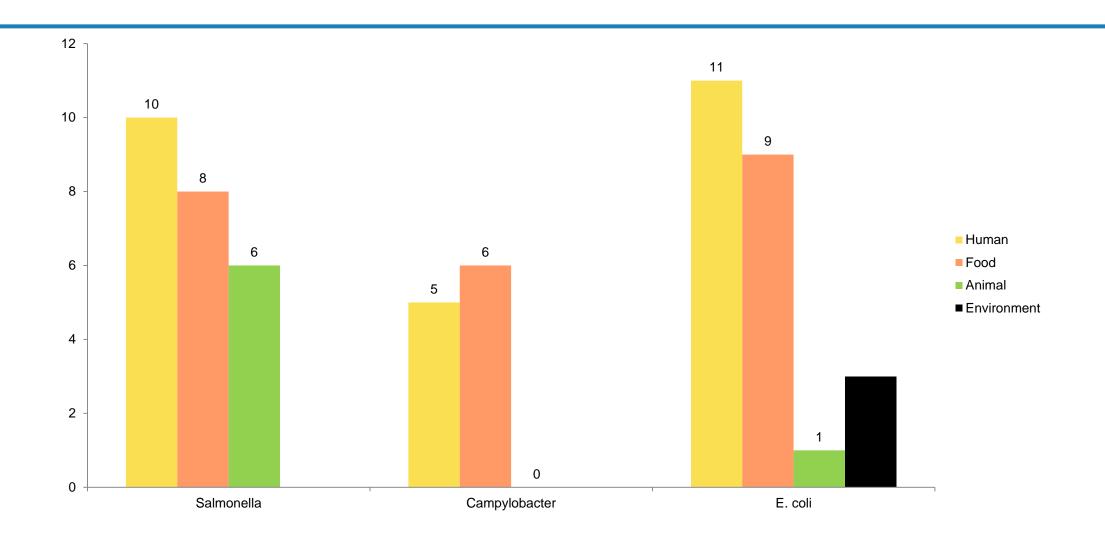
 Estrecha colaboración y comunicación entre sectores humano, alimentos animales y ambiento.

- Cola gube
- Polít
- Una inter

Programa Nacional de Vigilancia Integrada de RAM


Intervention adicional

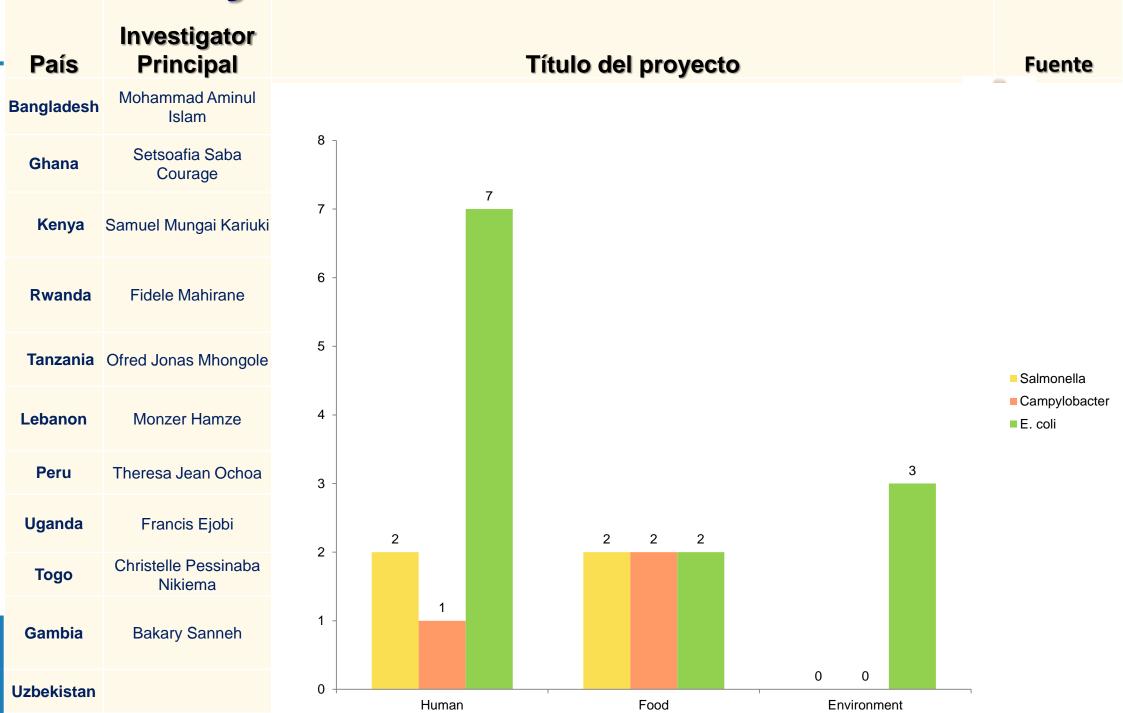
 Colaboración entre socios regionales / internacionales (Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), Organización Mundial de Sanidad Animal (OIE))



6

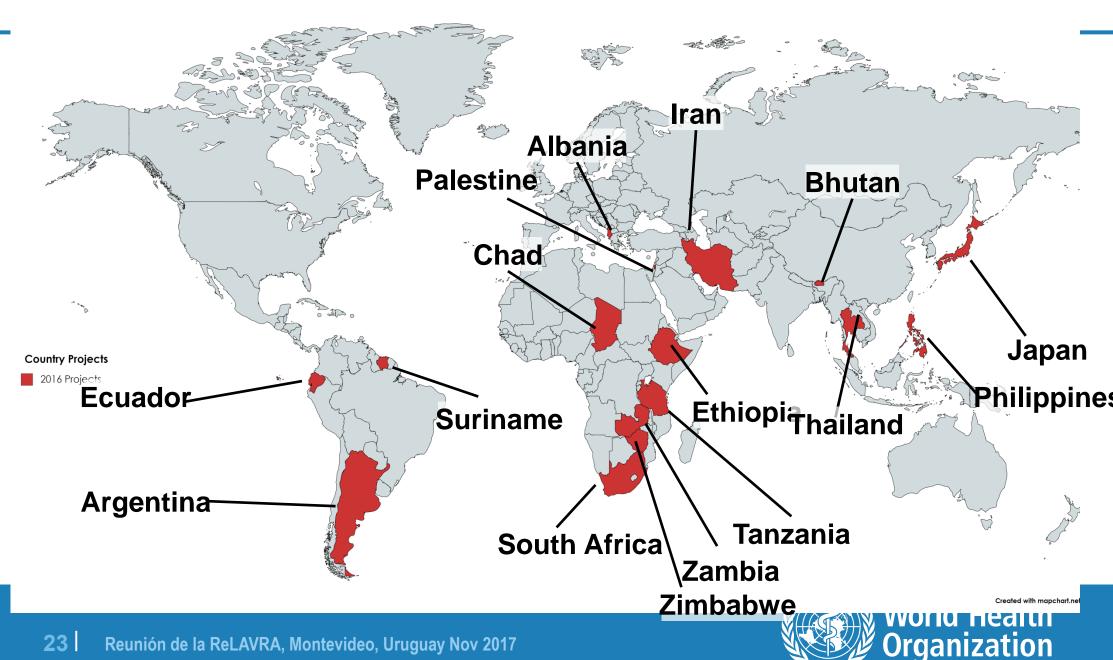
Desde 2010, 26 proyectos piloto AGISAR

Proyectos Piloto AGISAR 2010-2016



AGISAR projects 2014

Proyectos Piloto AGISAR 2014



Antimicrobial Resistance 2014: Findings

Country	Finding
Bangladesh	Patients with diarrhea 63% samples were positive for ESBL Shigella/Salmonella were positive for ESBL E. coli
Gambia	Faecal carriage ESBL producing Enterobacteriaceae among foodhandlers was 6.37% (36/565). <i>Klebsiella spp</i> 25%(9/36), <i>Escherichia spp</i> 22.22%(8/36)
Ghana	E. coli Resistance: Macaroni CTX 21% and CIP 5%, Salad CTX 16% and No R CIP, Beef 40% and 0.9%
Rwanda	E. coli ESBL 27% in health animals
Tanzania	E. coli ESBL 13% samples from the health animals: Cattle, Goats, Pigs, Chicken, Ducks and wildlife
Togo	60% ESBL producing Enterobacteriacea among children under 5 years old hospitalized for acute febrile gastroenteritis
Peru	E. coli CIP and CRO resistance was less than 4%. Campylobacter spp. CIP 88%, TCY 90% and ERY 17% children with diarrhea.
Lebanon	Campylobacter 95.7% CIP R
Uzbekistan	Salmonella poultry: 6% R 3GC, 74% R CIP. Salmonella patients 22% R 3GC, 50% RI CIP. Campylobacter poultry ERY 8%, TCY 58%, CIP 92%, Campylobacter patients Resistance ERY 14%, TCY 43%, CIP 71%.

Proyectos Piloto AGISAR – 2017

ESBL E.coli

A MANUAL FOR DEVELOPING NATIONAL ACTION PLANS

GLOBAL ACTION PL ON ANTIMICROBIAL RESISTANCE

Version 1 February 2016 esistance tivities

VI Reunión del grupo AGISAR

Entre los temas importantes discutidos se incluyó:

Including all relevant sectors in integrated surveillance is required to understand the full
picture. The role of water, sewage, and soil in maintaining resistant bacteria as a source for
animals and people, as well as allowing for contact between different populations of
resistant bacteria and possible transfer of genes, was repeatedly noted. Microorganisms
from these sources need to be monitored, and contamination controlled. Similarly,
antibiotic usage in crops and resistance in plant-derived foods would have to be included in
any comprehensive, integrated surveillance plan.

El trabajo desarrollado posterior a la VI Reunión de AGISAR

Concept note

WHO Integrated Global Survey on ESBL-producing *E. coli* using a "One Health" approach - An initiative of the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR).

Contributors: Awa Aidara-Kane (WHO), Antoine Andremont (University of Paris-Diderot Medical School), Mark D. Sobsey (Gillings School of Global Public Health, University of North Carolina), H. Morgan Scott (Texas A&M University)

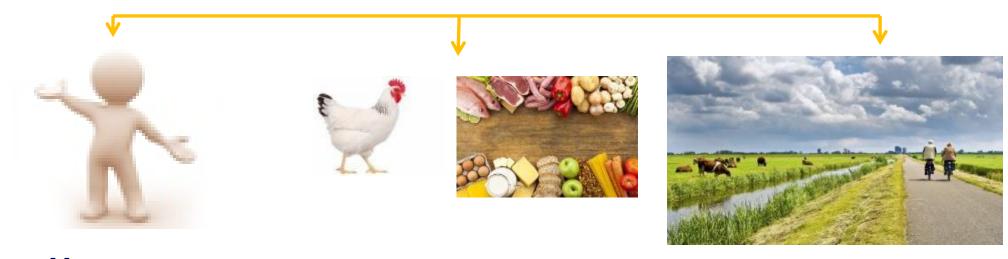
WHO Integrated Global Survey on ESBL-producing E. coli using a "One Health" approach, "The Tricycle Project"

1st Meeting for ESBL E. coli Project Protocol Development

North Carolina, October 18-19, 2016

Porque el enfoque en un indicador?

- Simple y factible en todos los países:
 - Una simplificación con respecto a sistemas establecidos con múltiples especies y antibióticos/mecanismos de resistencia
 - Si se tienen 5 especies y 5 antibióticos con dos mecanismos de resistencia: 50 indicadores
- Se priorizó una especie/mecanismo de resistencia común en los tres sectores (Una Salud)


Vigilancia de *E. coli* productora (BLEE Vigilancia triciclo

ESBL E.coli

Vigilancia en los tres sectores

→ Un microorganismo/un mecanismo de resistencia como indicador

E. coli productora de BLEE*

Humanos

Cadena alimenticia

Ambiente

Plan: 3 años (2016-2019)

Objetivos de la Vigilancia Global

ESBL E.coli

- Establecer un Sistema de Vigilancia Integrada de RAM en los Estados Miembro en *E. coli* productora de BLEE en tres principales sectores, humano, cadena alimenticia y ambiente
- Establecer una metodología estandarizada para vigilar
 E. coli productora de BLEE
- Comparar entre países la proporción de E. coli BLEE en los tres sectores

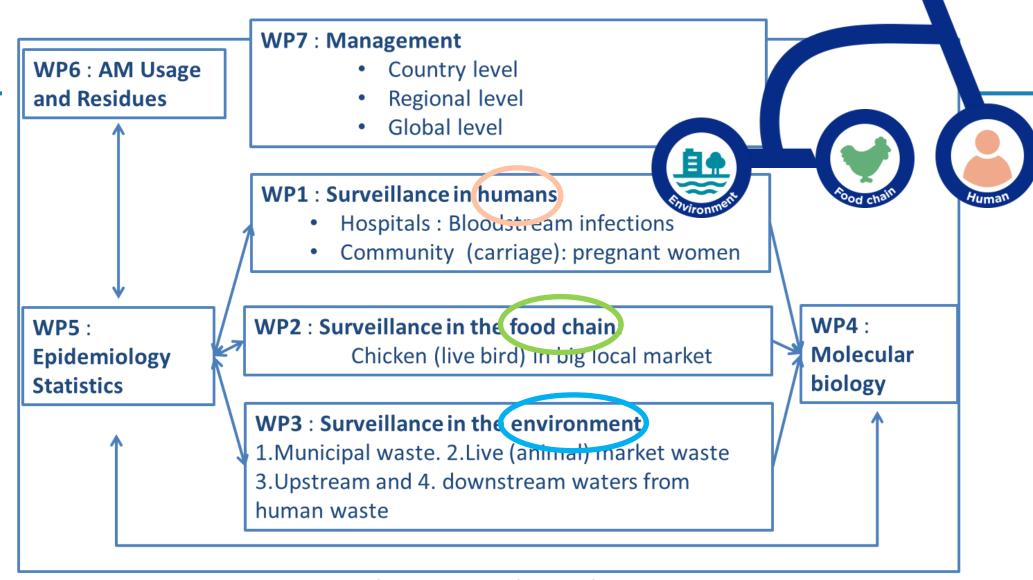
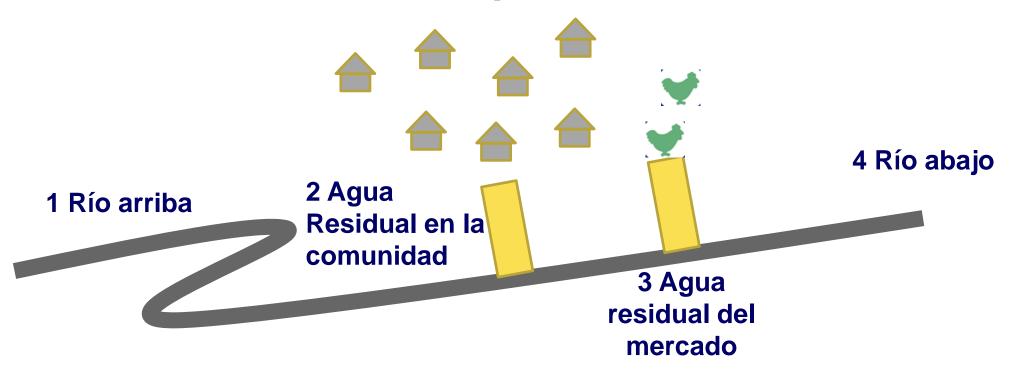


Figure 1. ESBL Ec Tricycle project.
WP Working Package

Metodología


Sector	Sitio	Tipo muestral	Muestra	Detección
Humano	Hospital	Paciente	Bacteremias	Método rutinario
	Comunidad	Mujeres embarazadas	Heces/hisopo rectal	MacConkey+CTX*
Animal	Mercado	Pollo	Cecal	MacConkey+CTX
Ambiente	Ciudad capital/sentinela	Desague	Agua residual de la comunidad	TBX/TBX +CTX
	Ciudad capital/sentinela	Desague de mercado	Agua	TBX/TBX +CTX
	Ciudad capital/sentinela	Río	Agua	TBX/TBX +CTX
	Ciudad capital/sentinela	Río	Agua	TBX/TBX +CTX

*MacConkey+CTX: 4ug/ml

Tricycle – environmental sampling

- 2 ciudades: Ciudad capital, y una "ciudad sentinela" de 100 000 habitantes
- Concentraciones de E coli y el % de E coli BLEE

Numbers of Samples: 2 ciudades x 4 muestras x 6-8 rondas/año= 48-64

Desarrollo del protocolo

- Paquetes de trabajo
 - Gestión
 - Principales paquetes
 - Humano
 - Cadena alimenticia-Animal
 - Ambiente
 - Complementarios
 - Epidemiología
 - Análisis molecular
 - Uso de Antimicrobians y Residuos
- 3 years (2016-2019)

Cronograma

Activity	Timeline
Reunión de expertos, definición de paquetes y desarrollo	Octubre 2016
de la nota conceptual	
Evaluación de metodologías microbiologicas	Noviembre- Marzo 2016
Selección de países para el pilotaje del proyecto	Enero-abril 2017
Reunión de expertos para la revisión de métodos,	Marzo 2017
desarrollo de los módulos de entrenamiento y la primera	
versión del protocolo	
Entrenamiento a países selecionados	Agosto-Noviembre 2017
Implementación de la fase piloto en países seleccionados	Noviembre-Diciembre 2018
Análisis de datos, análisis molecular	Noviembre 2018
Reunión de expertos para analizar resultados y finalizar el protocolo	Enero 2019
Desarrollo de la estrategia de diseminación	Marzo 2019

Países seleccionados

Se compartió con las Oficinas Regionales de OMS

Financiadas 4 Regiones, AFRO, EMRO, SEARO and WPRO

Región	Países seleccionados
AFRO	Ghana
EMRO	Pakistán
SEARO	Indonesia, Sri Lanka, Bangladesh (2018)
WPRO	Malaysia
AMRO/PAHO	En proceso de selección

