Early Warning System and Portfolio Decision Model for Infectious Diseases

Matteo Convertino, PhD PE University of Minnesota, USA

Presentation conducted during the International Workshop of the Oswaldo Cruz Institute/FIOCRUZ for Leptospirosis Research Based on Country Needs & the 5th Global Leptospirosis Environmental Action Network (GLEAN) Meeting on November 10-12, 2015, in Rio de Janeiro, Brazil.

Portfolio Decision Modeling: Kolkata Case Study

杰

Reddy et al., 2015, submitted to PNAS

Low Risk

High Risk

Moderate Risk

Visualization

(B)

Community 2

Community 4

(A) Output of the physical model" expected system risk based on the epidemiology model, environmental and mobility model

Community 1

Community 3

Community 5

- (B) Output of the portfolio decision model, selection of the optimal control set at the community scale
- (C) Portfolio controlled solution: Lowest systemic risk.

Water filtration
Environmental controls
Monitor
Vaccination
Hygiene & Sanitation
Education
No Action
Mobility controls

忍

MCDA

Altornativos	Critoria	System States			
Allematives	Criteria	State 1	State 2		State K
	Criterion 1	X _{1,1,1}	X _{2,1,1}		X _{K,1,1}
Altornativo 1	Criterion 2	X _{1,1,2}	X _{2,1,2}		X _{K,1,2}
Alternative					
	Criterion N	X _{1,1,N}	X _{2,1,N}		X _{K,1,N}
				<i>X_{k,m,n}</i>	
	Criterion 1	X _{1,M,1}	X _{2,M,1}		X _{K,M,1}
Altornativo M	Criterion 2	X _{1,M,2}	X _{2,M,2}		X _{K,M,2}
Alternative IVI					
	Criterion N	X _{1,M,N}	X _{2,M,N}		$X_{K,M,N}$

Local Population-adjusted Risk

Alternative

$$Effectiveness$$
 ~Efficacy
 $V_{m,j}^*(\underline{R}) = (1 - v_j(\underline{R})) f_{i(j)} R_{i(j),m} V_{m,j}(\underline{R})$
 $V_{m,j}(\underline{R}) = (1 - v_j(\underline{R})) f_{i(j)} R_{i(j),m} V_{m,j}(\underline{R})$
 $V_{m,j}(\underline{R})$ (if available and meaningful)
~Urgency
Systemic Risk
 $V_T(\underline{R}) = \sqrt{\sum_{m=1}^{M} \sum_{j=1}^{J} (V_{m,j}^*(\underline{R}) v_j)^2} = \sqrt{V_T(\underline{R})} = \sqrt{V_T(\underline{R})^2 + V_H(\underline{R})^2}$

m=disease management alternative

i=site

j=criteria or ecosystem services (e.g., incidence, water quality)

Is there an efficacy/effectiveness of control alternatives?

Is there history of disease management strategies?

Portfolio Optimality

Yang et al., 2015, in prep

Pareto Frontiers considering urban and rural benefits

Budget and Risk Diversification

The lower the budget the lower the expense of the portfolio and the higher the risk

Green=portfolio solution

Pareto Optimal Strategies

Monocontrol is not selecting one alternative a priori vs. a priori selected alternatives (in the latter scenario budget constraint may not allow to select the imposed alternative) Portfolio does allow multiple alternatives

From Large Scale

FSU Meteocologility of a tropical cyclone eventually passing over Sri Lanka (PPI)/BIOSary intensity based upon a given position. Using 1945-2012 best-track.

From Large Scale Forcing to Disease Dynamics

X

Reddy et al., 2015, submitted to PNAS

Nearest Neighborhood Model Wij ~ 1/Δij (width) Δij=|Ci-Cj| (gradient of cases) Fij=1/Δij (fluxes)

aij=1 if j adjacent to j 0 otherwise

Preferential Case Pathways (at a closure point) max Wij ~ $1/\Delta ij$ or min $\Delta ij=|Ci-Cj|$ max(Fij)= $1/min(\Delta ij)$

non looping network Minimum Spanning Tree Optimal Transmission Networks (OTN)

Here OTN is an optimal recurrence network of cases. The resolution is too coarse to map this functional network back to a structural network of transmission.

On the Morphological Effective Systemic EpiGraph (MESE)

Novelty in the approach:

- Uncertainty and multiplicity in transmission routes and disease determinants
- Bidirectional fluxes on transmissions
- Effective distances (related to effective velocities) *Novelty in the Epi:*
- Morphology contribution of disease production
- Time delay
- Factor interactions

On the Morphological Effective Systemic EpiGraph (MESE)

Traveling Waves in Multislice Networks (G₀ vs R₀)

馮

Connectopathies, Factorgenicity and Population Outcomes: A Morphological Effective Systemic EpiGraph model (MESE)

EPI (STATIC; RISK) TRANSPORT (DYNAMICS; OUTCOME)

$$I(\tau) = A \int j_e(\tau) [p_\gamma(f_{\gamma_1} * f_{\gamma_n})]_{t-\tau} d\tau$$

$$I(\tau) = A \int j_e(\tau) W(t-\tau) d\tau$$

 $f_{\gamma} = pdf(L_{\gamma})pdf(T_{L_{\gamma}})$

ſ

L=network length

Travel Time distribution ~ Arrival Time distribution (of Cases) ~ (Residence Time)⁻¹

Convertino, Huang, Liu, 2014, WRR, submitted ... GIUH from Rodriguez-Iturbe and Valdes, 1979

Scaling and Early Warning Models: Application to Leptospirosis in Sri Lanka

Reddy et al., 2015, submitted to PNAS

Paris Fète de la Musique / mouvements des mobiles

15:02 51/02/5008

Visibility Networks: from Time Series to Complex Networks

Lacasa et al., 2008, PNAS

Disease Description

- Zoonotic Water-based Disease
- 250 serovars
- Significant endemicity in developing countries
- Animal-Human transmission via environment
- Contracted from contact with contaminated water

Disease Incidence in Sri Lanka

Disease Dynamics Classification

 Extreme events are often described via Pareto or power law distribution using what's know as the 80-20 rule or Pareto principle

 "80/20 rule" - 80% of outcomes(cases) come from top 20% of causes(events)

Stochastic EWS Model

Metamodeling of ID Dynamics Epidemic Endemic В Rainfall 0.0 00.1 1.10 Rodent Leptospirosis **Topographic Index** 0.73 Population Incidence 0.00 0.78 1.40 Human Population MANAGEABLE VARIABLES

Reddy et al., 2015, submitted to PNAS

Socio-environmental factors (after metamodeling)

- Topographic Index
- Host Suitability
- Population
- Rainfall

60-80

80-100

Reddy et al., 2015, submitted to PNAS

Lack of correlation does not imply lack of

causation

Topographic Index

 Steady state wetness index characterizing the ecohydrology of ecosystems

$$TI = \log\left(\frac{A_i/b_i}{\tan\beta_i}\right)$$

Ai=drainage area upstream a point bi=area per unit width orthogonal to the flow direction Betai=slope

Host Suitability

Calculated via MaxEnt

 Probability to observe infected rodents (within the rodent population)

 Environmental layers used in MaxEnt: population density and Topographic index

On the Return Time of Cases

• Exceedance probability is the likelihood to have and event greater than or equal to C

$P(C \geq c)$

 $T(C) = \frac{1}{P(C \ge c)}$

Return Period

Epdf reflecting disease dynamics and transitions

EWS Model Analytics

- Model introduced by Azaele (PRL, 2010) to describe cholera
- Langevin equation with Gaussian white noise

$$\dot{I}(t) = b - \frac{I(t)}{\tau} + \sqrt{DI(t)}\xi(t)$$
$$\langle \xi(t)\xi(t')\rangle = 2\delta(t-t')$$

EWS Model Factors

 b ~ (inter community cases) immigration rate of infected hosts and contaminated water flow

 D – (within community case fluctuations) stochasticity of disease incidence

tau – characteristic time scale of disease decay

Solution for mean value of infected

$$\langle I(t) \rangle = \frac{e^{-t/\tau}}{c} \left[1 + cD\tau (e^{t/\tau} - 1) \right]^{b/D}$$

Model Calibration

 b, D, tau found using a least squares optimization for peaks across Sri Lanka

Scaling Model Factors

D varies with peak size

 $D = 0.59x^{1.36}$ $b/D = .663 \pm .116$ $\tau = 1.301 \pm .496$

tau dependent on the disease as well as b/d

D is prop. to the peak size

Reddy et al., 2015, submitted to PNAS

Model Prediction

C(t) 8

Э

A) ColomboB) KegalleC) Kalutara

Eco-epidemiological Scaling

Eco-epidemiological Scaling

Take Home Messages

- Peaks shaped by max rainfall, host suitability, and human population
- Baseline shaped by average rainfall, TI, host suitability, and human population
- Scaling relationship to be verified (in terms of their universality) across all Leptospirosis impacted areas. These relationships allows to predict baseline and peak dynamics

Take Home Messages

- Defined a probabilistic criteria for the definition of endemic and epidemic regimes via analyses of surveillance data
- Analyzed outbreak recurrence, magnitude, and decay based on a stochastic patternoriented model
- Performed a macro-epidemiological detection of environmental causal factors

Supplementary Material

					Loc	al Epidem	ic Model (I	Nodal)
dS.		2				S: susceptib	les c	odeço, 2001
	=	$\mu (H_i - S_i)$	$) - \mathcal{F}_i(t) S_i + \rho$	R_i ,			(tribute to Snow	and Pacini)
dt						<i>I</i> : infected		
$\frac{dI_i}{dt}$	=	$\mathcal{F}_i(t) S_i - ($	$(\gamma + \mu + \alpha) I_i$,			R: recovered	d W:	Water
$rac{dR_i}{dt}$	=	$\gamma I_i - (\rho +$	$(\mu) R_i$,			B: water path	nogen concenti	ration
$rac{dB_i}{dt}$	=	$-\mu_B B_i - l$	$l\left(B_i - \sum_{j=1}^n P_{ji}\right)$	$\frac{W_j}{W_i}B$	$\left(j \right) + \frac{p}{W_{i}}$	$\frac{1}{i}\left[1+\Phi J_{i}(t)\right]\mathcal{G}_{i}(t)$	e),	
$rac{dW_i}{dt}$	=	$W_i + J_i(t)$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$T_j(t)$				
$\frac{dW_i}{dt}$	=	$W_i + J_i(t)$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor	Description		Value Distribution	References
$\frac{dW_i}{dt}$	= ulated	$W_i + J_i(t)$ d Cases	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor	Description Natural mortal	ity rate (day^{-1})	Value Distribution 1/(54 · 365) G(0.2) 1/(54 · 365) G(0.2)	References CIA (2013)
$rac{dW_i}{dt}$ Cum	= ulated	$W_i + J_i(t)$ d Cases	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor	Description Natural mortali Cholera-induced	ity rate (day^{-1}) d mortality rate (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 - 265) G(0.5)$ $1/(5 - 265) G(0.5)$	References CIA (2013) Njoh, M.E. (2010)
dW _i dt Cum	= ulated	$W_i + J_i(t)$ d Cases	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor	Description Natural mortali Cholera-induced Acquired immu	ity rate (day^{-1}) d mortality rate (day^{-1}) inity loss (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013)
$\frac{dW_i}{dt}$ Cum dC_i	= ulated	$W_i + J_i(t)$ d Cases	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate t	ity rate (day^{-1}) d mortality rate (day^{-1}) unity loss (day^{-1}) the rate (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $1.0 U(0.5; 3.0)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Cadeco (2001)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$	= ulated	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$,	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β γ	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate t Individual reco	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) the rate (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$	= ulated =	$W_i + J_i(t)$ d Cases $\sigma {\cal F}_i(t) S_i ,$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\frac{\Gamma_j(t)}{\Gamma_j(t)}$ Factor μ α ρ σ β γ μ_B	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate t Individual recov Net growth rate	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) se rate (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.23 G(0.25)$ 0.25	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) Codeco (2001)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$	= ulated	$W_i + J_i(t)$ d Cases $\sigma {\cal F}_i(t) S_i ,$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β γ μ_B c	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual recor Net growth rate Per-capita store	ity rate (day^{-1}) d mortality rate (day^{-1}) inity loss (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$ $0.2 G(0.25)$ $1.9 \cdot 10^3 G(0.5)$ 0.25	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$	= ulated	$W_i + J_i(t)$ d Cases $\sigma {\cal F}_i(t) S_i ,$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β γ μ_B c m	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual recor Net growth rate Per-capita store Human mobility	ity rate (day^{-1}) d mortality rate (day^{-1}) inity loss (day^{-1}) inity loss (day^{-1}) is e rate (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$ y rate $(-)$	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$ $0.23 G(0.25)$ $14, 9 \cdot 10^3 G(0.5)$ $0.12 G(0.5)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$ Rep	= ulated = o	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$,	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β γ μ_B c m b	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual record Net growth rate Per-capita store Human mobility Pathogen trans	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$ y rate $(-)$ port bias $(-)$	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$ $0.23 G(0.25)$ $14, 9 \cdot 10^3 G(0.5)$ $0.12 G(0.5)$ $0.07 G(0.25)$ $0.07 G(0.25)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$ Rep	= ulated = o	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$, ction Numb	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_j(t)$ Factor μ α ρ σ β γ μ_B c m b l	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate t Individual recor Net growth rate Per-capita store Human mobility Pathogen trans V. cholera mob	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) to contaminated water (day^{-1}) to contaminated water (day^{-1}) e of V. cholerae (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$ y rate (-) port bias (-) bility (day^{-1})	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$ $0.23 G(0.25)$ $14, 9 \cdot 10^3 G(0.5)$ $0.12 G(0.5)$ $0.07 G(0.25)$ $0.88 G(0.3)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$ Rep	= ulated = roduc	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$, ction Numb	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_{j}(t)$ Factor μ α ρ σ β γ μ_{B} c m b l ψ	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual recor Net growth rate Per-capita store Human mobility Pathogen trans V. cholera mob Contaminated p	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) to contaminated water (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$ y rate (-) port bias (-) pility (day^{-1}) runoff coefficient (day/mm)	$\begin{tabular}{ c c c c } \hline Value & Distribution \\ \hline 1/(54 \cdot 365) & & G(0.2) \\ 8.2 \cdot 10^{-3} & & G(0.5) \\ 1/(5 \cdot 365) & & G(0.5) \\ 0.2 & & U(0.05; 0.4) \\ 1.0 & & U(0.5; 3.0) \\ 0.2 & & U(0.05; 0.5) \\ 0.23 & & G(0.25) \\ 14, 9 \cdot 10^3 & & G(0.5) \\ 0.12 & & G(0.5) \\ 0.07 & & G(0.25) \\ 0.88 & & G(0.3) \\ 4.9 \cdot 10^{-2} & & U(2.9 \cdot 10^{-2}; 6.9 \cdot 10^{-2}) \\ \hline \end{tabular}$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$ Rep	= ulated =	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$, ction Numb $\beta p H_i$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\frac{\Gamma_{j}(t)}{Factor}$ μ α ρ σ β γ μ_{B} c m b l ψ p	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual recor Net growth rate Per-capita store Human mobility Pathogen trans V. cholera mobi Contaminated to Contamination	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of V. cholerae (day^{-1}) ed water volume $(m^3/individual)$ y rate (-) port bias (-) bility (day^{-1}) runoff coefficient (day/mm) rate $(cells/(day \cdot individual))$	Value Distribution $1/(54 \cdot 365) G(0.2)$ $8.2 \cdot 10^{-3} G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $1/(5 \cdot 365) G(0.5)$ $0.2 U(0.05; 0.4)$ $1.0 U(0.5; 3.0)$ $0.2 U(0.05; 0.5)$ $0.2 U(0.05; 0.5)$ $0.23 G(0.25)$ $14, 9 \cdot 10^3 G(0.5)$ $0.12 G(0.5)$ $0.12 G(0.5)$ $0.07 G(0.25)$ $0.88 G(0.3)$ $4.9 \cdot 10^{-2} U(2.9 \cdot 10^{-2}; 6.9 \cdot 10^{-2})$ $9.53 \cdot 10^9 U(5.0 \cdot 10^9; 15 \cdot 10^9)$ $4.9 \cdot 10^{-2} U(5.0 \cdot 10^9; 15 \cdot 10^9)$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013)
$\frac{dW_i}{dt}$ Cum $\frac{dC_i}{dt}$ Rep $R_0 =$	= roduc	$W_i + J_i(t)$ d Cases $\sigma \mathcal{F}_i(t) S_i$, ction Numb $\beta p H_i$	$-T_i(t) + \sum_{j=1}^{n_i^{up}} T_j$	$\Gamma_{j}(t)$ Factor μ α ρ σ β γ μ_{B} c m b l ϕ p K	Description Natural mortali Cholera-induced Acquired immu Cumulative cas Exposure rate to Individual recor Net growth rate Per-capita store Human mobility Pathogen trans V. cholera mob Contaminated of Contaminated of Contamination	ity rate (day^{-1}) d mortality rate (day^{-1}) mity loss (day^{-1}) to contaminated water (day^{-1}) to contaminated water (day^{-1}) very rate (day^{-1}) e of <i>V. cholerae</i> (day^{-1}) ed water volume $(m^3/individual)$ y rate $(-)$ port bias $(-)$ sility (day^{-1}) runoff coefficient (day/mm) rate $(cells/(day \cdot individual))$ constant $(cells/m^3)$	$\begin{tabular}{ c c c c } \hline Value & & Distribution \\ \hline 1/(54 \cdot 365) & & G(0.2) \\ 8.2 \cdot 10^{-3} & & G(0.5) \\ 1/(5 \cdot 365) & & G(0.5) \\ 0.2 & & U(0.05; 0.4) \\ 1.0 & & U(0.5; 3.0) \\ 0.2 & & U(0.05; 0.5) \\ 0.23 & & G(0.25) \\ 14, 9 \cdot 10^3 & & G(0.5) \\ 0.12 & & G(0.5) \\ 0.07 & & G(0.25) \\ 0.088 & & G(0.3) \\ 4.9 \cdot 10^{-2} & & U(2.9 \cdot 10^{-2}; 6.9 \cdot 10^{-2}) \\ 9.53 \cdot 10^9 & & U(5.0 \cdot 10^9; 15 \cdot 10^9) \\ 1.0 \cdot 10^6 & & G(0.3) \\ 0.64 & & G(0.3) \\ \hline \end{tabular}$	References CIA (2013) Njoh, M.E. (2010) Koelle et al. (2005) WHO (2013) Codeco (2001) Codeco (2001) Codeco (2001) Codeco (2001) GWP (2013) - <tr tr=""> - <tr tr=""> <</tr></tr>

-

Radiation Model of Human Mobility

Total Exposure Rate (Contact Rate) or Exposure Function

$$\mathcal{F}_i(t) = \left| \beta \left[(1-m) \frac{B_i}{K+B_i} \right] + m \sum_{j=1}^n Q_{ij} \frac{B_j}{K+B_j} \right]$$

Local E-H

Far H-H

Probability of Human Mobility

$$Q_{ij} = \frac{H_i H_j}{(H_i + H_{ij})(H_i + H_j + H_{ij})},$$

Total Infective Pool (Primary and Secondary Infection Pathway Function for Bacteria Production) or Generation Function

$$\mathcal{G}_i(t) = \left[(1-m) I_i + m \sum_{j=1}^n Q_{ij} I_j \right],$$

Local E-H Far H-H

The human-human transmission is modeled by enhancing the excretion of vibrios where people move.

