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Scalability and Universality  
(Endemic/Epidemic  

Characterization & Macro Prediction) 
 
 
 

Environmental Dynamics 
(Early Warning and Real-time Fine Scale 

Forecasting) 
 
 
 

Systemic and Value-based Optimal 
Ecosystem Design  

(Portfolio Decision Model) 
 
 

Three Pillars 



From Emerging (Invariant) Patterns to Stochastic 
Early Warning System Models 

Reddy et al., 2015, submitted to JRS-I 



Example return 
periods 

A) 115 weeks 
(>30) 

B) 45 weeks 
(>15) 

C) 43 weeks 
(>17) 
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Distribution of EHL Outcomes 
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Multi-moment Scaling (!) 

 

<  n>/<  n-1>  Ah 

I = Cases 

A = drainage area 

h = scaling exponent 

HydroEpi Networks and Scaling 



Reddy et al., 2015, submitted to JRS-Interface 

A Predictive Model 
 



The How 



• Model introduced by Azaele (PRL, 2010) to 
describe cholera 

• Langevin equation with Gaussian white noise 

 

 

 

Early Warning System (EWS) Model Analytics  



• b ~ (inter community cases) immigration rate of 
infected hosts and contaminated water flow; 
proportional to je (the stressors) 

 
• D ~ (intra community case fluctuations) stochasticity of 

disease incidence; proportional to W (the connections) 
 

• t ~ characteristic time scale of disease decay 
 
b, D, tau found using a least squares optimization for 
peaks across Sri Lanka 

 
 

EWS Model Factors 



• D varies with peak size 

Scaling Model Factors 

Reddy et al., 2015, submitted to JRS-I 

tau dependent on the disease as well as b/d 
 
D is prop. to the peak size 



A) Colombo 

B) Kegalle 

C) Kalutara 

Model Prediction 



Scaling and Early Warning Models: Application 
to Leptospirosis in Sri Lanka 

Reddy et al., 2015, submitted to JRS-I 
 



Optimal  
Transmission  

Networks 
(OTN) 

 

.   

Width Function 

W(x) only dependent on  
Network Topology 

(travel time distribution) 





	

Connectopathies, Factorgenicity and Population Outcomes: A 
Morphological Effective Systemic EpiGraph model (MESE) 
 

EPI (STATIC; RISK) TRANSPORT (DYNAMICS; OUTCOME) 

Convertino, Huang, Liu, 2014, WRR, submitted 
… GIUH from Rodriguez-Iturbe and Valdes, 1979 

Travel Time distribution ~ Arrival Time distribution  (of Cases) ~ (Residence Time)-1 

L=network length 



• Topographic Index 

• Host Suitability 

• Population 

• Rainfall 

Socio-environmental  
factors  
(after metamodeling) 

Reddy et al., 2015, submitted to JRS-I 



Eco-epidemiological Scaling  



Forecasting Model 



Other cases (non ‘’DEN’’ confirmed 
dominate the signal for SJ) 
 



Worldwide country-scale forecasts 



Control 

Control 

Portfolio Decision Model 



(A) Output of the physical model: expected 
system outcome based on the 
epidemiology, environmental and 
mobility model 

(B) Output of the portfolio decision model, 
selection of the optimal control set at 
the community scale 

(C) Portfolio controlled solution: lowest 
systemic outcome (e.g. incidence). 

(A) (B) 

(C) 

	

Concept 



i=disease management alternative 
j=target population 
m=site  

~Efficacy 

(if available and meaningful) 

~Urgency 



Domain 



Syndemic Scaling 



Optimizing One Disease Management 



Optimizing Syndemic Management 



Optimization of … 
 

Analysis, with Theoretical Models as 

Macroscopes that look at scaling and universality 

of emerging disease patterns lead by the 

interaction of fundamental  factors (Finite 

Topologies/Attractors exist in Nature!) 

 

Predictive/Forecasting Models which should be 

as simple and accurate as possible – tight to the 

objective of study – versus fully mechanistic, 

complex and demanding models  

 

Predictability of ‘’Unknowns’’ (e.g., Low 

Probability High Consequence Events) for the 

identification of tipping points and potential future 

states  

 

Models as technology to design the future (the 

environment)  rather than just predicting the most 

likely one because it is more likely (and useful) to 

design an optimal future by embracing the full 

uncertainty of the status quo and the range of 

possibilities -> the best way to predict the future 

is to design it 

 

‘’Simplicity is the ultimate 
sophistication … and the 
solution of the complex 

nature’’ 
Leonardo Da Vinci 

... and Simplicity  

 



 
Thanks! 

 

Yang Liu, PhD Candidate 
Matteo Convertino, PhD Dr.Eng.  

	



Eco-epidemiological Scaling  



	

Width Function 

Multislice Network 

W(x) only dependent on  
Network Topology 

(travel time distribution) 



Zoomed 
Model Forecast 



 
Supporting Information 

 



long term seasonal oscillating wave of cases  
(sign of a large scale regular forcing) 
This is the ‘’negative’’ part that makes it less predictable 

cascade of events following a power-law distribution that underlines 
the scale-free critical dynamics (positive thing that increases 
predictability) 



0.55 

(of Runoff) 

Scaling Epidemiology 



• b, D, tau found using a least squares 
optimization for peaks across Sri Lanka 

 

Model Calibration 



Distinct Signature of  
Complex System Dynamics 



Time Dependent Importance of Variables 



• Steady state wetness index characterizing the 
ecohydrology of ecosystems 
 
 
 

 
Ai=drainage area upstream a point 
bi=area per unit width orthogonal to the flow 
direction 
bi=slope 

Topographic Index 



• Exceedance probability is the likelihood to 
have and event greater than or equal to C 

 

 

• Return Period  

On the Return Time of Cases 



Example return 
periods 

A) 115 weeks 
(>30) 

B) 45 weeks 
(>15) 

C) 43 weeks 
(>17) 

 

 

 

High H 
Small D 

Low H 
High D 



The How 



On the Morphological Effective Systemic EpiGraph (MESE) 
 

	

Novelty in the approach: 
- Uncertainty and multiplicity in transmission routes and disease determinants  
- Bidirectional fluxes on transmissions 
- Effective distances (related to effective velocities)  
Novelty in the Epi: 
- Morphology contribution of disease production 
- Time delay 
- Factor interactions Convertino, Huang, Liu, 2014, WRR, submitted 



Epdf reflecting disease dynamics and transitions  
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Supporting Information 

 



area A [km2] 

<n>/<n-1> 

 

n=1  

(Hack’s law) 

n=2 

n=3 

n=4 

n=5 

   [km] 

 

<  n>/<  n-1>  Ah 

 

 

wonderful data show  

that this is indeed the case over 

several orders of magnitude Rigon et al., WRR, 1996 

L = river’s length 

A = area 

h = Hack’s exponent 

Hydrological Networks and Scaling 



Area  

Sp
e
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Species ~ Area z 

z = universal exponent independent of details of socio-ecological systems! (at stationarity) 

From Hydrology to Ecology 
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Overlap of Peaks as a Sign of Scale Invariance 



Non scaling dynamics 
Scaling dynamics 

Linearity 



Importance of 
Precipitation 



Unimportance of NDVI 



Disease Dynamics Classification 

• Extreme events are often described via Pareto 
or power law distribution using what’s know 
as the 80-20 rule or Pareto principle 

 

• “80/20 rule” - 80% of outcomes(cases) come 
from top 20% of causes(events) 



From Large Scale  

Forcing to Disease Dynamics 



The How 



The How 



The How 



The How 



The How 



The How 



The How 



Models as Macroscopes that look at the 

scaling and universality of emerging patterns 

lead by fundamental collective factors 

interacting together 

 

Importance to See Problems ‘’at Distance’’: 

Commonality of Systems’ Dynamics and 

Methods for Analogous Solution 

(systemic/inductive (complex systems) vs. 

reductionist/deductive approaches) 

 

High Predictability of ‘’Unknowns’’ (e.g., 

Low Probability High Consequence Events) 

because Finite Topologies/Attractors exist in 

Nature. Tipping points can be predicted 

 

Models as technology to design the future 

rather than just predicting the most likely one 

because it is more likely (and useful) to design 

an optimal future by embracing the full 

uncertainty of the status quo and the range of 

possibilities -> the best way to predict the 

future is to design it 

 

‘’Simplicity is the ultimate 
sophistication … and the 
solution of the complex 

nature’’ 
Leonardo Da Vinci 



On the Morphological Effective Systemic EpiGraph (MESE) 
 

	


