Canada’s Categorization of Existing Substances under CEPA 1999

Health Canada – PAHO Workshop
Lima, Peru
November 8-10, 2016
Outline

• Regulatory Background for existing chemicals
 – The Canadian Environmental Protection Act, 1999

• Categorization
 – Criteria, tools, approaches
 – Results

• The Way Forward
Canadian Environmental Protection Act (CEPA)

- First promulgated in 1988; renewed in 1999
- Ministers of the Environment and Health mandated to assess and manage risks to environment and human health of new and existing substances
- The Domestic Substances List (DSL) was created in 1991 for the purpose of defining a “new substance” under CEPA
 - Any chemical, polymer, nanomaterial or product of biotechnology not listed on the DSL is considered to be new to Canada and is subject to the notification requirements under New Substances Notification Regulations
- Approximately 23,000 substances (industrial chemicals) on the DSL
- Substances are regularly added to the DSL through the new substances program
Creation of the DSL

- A list of substances that are “in commerce” in Canada (i.e., “existing substances”)

- Substances nominated as being, between 1984-1986:
 - In Canadian commerce or used for commercial manufacturing in Canada, or;
 - Manufactured or imported in Canada at >100 kg/year
 - Does not include: contaminants, by-products and wastes

- Type of information originally collected on DSL substances in 1987 included:
 - Company Headquarters and Site of Manufacture
 - Type of Commercial Activity (import or manufacture)
 - Use Code
 - Quantity Range
 - Substance CAS # and Name
 - Molecular Formula/Structural Info (if available)
Types of Substances on the DSL
(total 23,000 substances)

*UVCB = Unknown or Variable composition, Complex reaction products or Biological material
Obligations under CEPA for Substances

- Ministers required to determine if substance is “toxic” as defined in the Act; i.e., if it is entering or may enter the environment in quantities that may:
 - Have an immediate or long-term harmful effect on the environment,
 - Constitute a danger to the environment upon which human life depends, or
 - Constitute a danger to human health or life

- Substances determined to be “CEPA toxic” require risk management
Addressing Existing Substances under CEPA

• CEPA 1988
 – Focus on pollution management
 – Priority Substance List (PSL) assessments
 • In-depth, complex; 5 year legislated deadlines
 • PSL1 (n=44 substances, released in 1989)
 • PSL2 (n=25 substances, released in 1995)

• CEPA 1999
 – Focus on pollution prevention
 – Ministers’ mandate expanded
 – Categorization of entire DSL (n = 23,000)
 – Screening assessments for categorized substances
 – Priority Substances List assessments
Categorization

• CEPA 1999 required Ministers of the Environment and Health to (by September 14, 2006) categorize the 23,000 substances on the DSL according to specific criteria to identify substances that:

 – May present, to individuals in Canada, the greatest potential for exposure; or

 – Are persistent (P) or bioaccumulative (B), in accordance with the regulations, and inherently toxic to humans or to non-human organisms, as determined by laboratory or other studies

• Categorization was a prioritization process that involved the systematic identification of substances that should be subject to a screening assessment

• There are new substances added to the DSL but these have already undergone assessment and therefore not subject to the categorization process.
Categorization Process

DOMESTIC SUBSTANCES LIST

Greatest Potential for Human Exposure

Persistent OR Bioaccumulative According to the Regulations

Persistent AND/OR Bioaccumulative and “Inherently Toxic to Humans”

Persistent AND/OR Bioaccumulative and “Inherently Toxic to non-Human Organisms”

FURTHER ATTENTION
Categorization Challenges

• No precedent, leading development of methodology
• Legislated deadline (7 years)
• Large number of substances with limited or no empirical data
• Varied types of substances on DSL
• Need to develop protective, transparent, scientifically credible approaches and criteria to identify priorities for environment and/or human health
• CEPA 1999 did not address how to further prioritize after categorization
Meeting the Mandate - Process

• Key: Development of robust proposals for review in public forum, including:
 – Peer input and peer review of various components by experts internationally
 • including those from stakeholder groups selected by 3rd party
 – Workshops of stakeholders to solicit input on specialized aspects
 • Interpreting use codes
• Interfaced internationally to access forward looking peer reviewed methodology addressing critical areas (in particular predictive tools) from all sectors
 – Where industrial stakeholders particularly were encouraged to contribute
• Continued updates to broad range of stakeholders; combined format preferred
• Communications pieces prepared & distributed as soon as various components conceptualized
Categorization Criteria/Tools

• Environment Canada
 – Persistence
 – Bioaccumulation
 – Inherent toxicity to non-human organisms

• Health Canada
 – Potential for Exposure
 • Simple tool
 – Inherent toxicity to humans
 • Simple & Complex tools
Challenges For Ecological Categorization

• Availability of empirical data
 – For example, for more than 11,500 organic substances examined,
 • Experimental aquatic toxicity data was found for 1200 substances (80% accepted)
 • Experimental P data was found for 1500 substances (50% accepted)
 • Experimental B data was found for 440 substances (80% accepted)
Information Sources

• Publicly available databases, journals, internet, international lists and data sources
• Voluntary data submitted by Industry
• Generated some phys-chem data and ecotoxicity data
• Modelled data - QSARs (Quantitative Structure Activity Relationships)
• Use of “read-across” data (from analogs)/apply grouping (category) approach
Data Preference for P B iT Profiles

<table>
<thead>
<tr>
<th>Preference</th>
<th>P</th>
<th>B</th>
<th>iT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher</td>
<td></td>
<td>Experimental</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Analogue / Groupings / Scientific rationale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td></td>
<td>Modelled (QSAR)</td>
<td></td>
</tr>
</tbody>
</table>
Technical Approaches/Strategic Guidance

Organics
- October 2002 Technical Workshop

Inorganics
- Findings and Recommendations from the IWG Report (2001)

UVCBs
- Category Approaches Documents (2005)

Polymers
- Category Approaches Documents (2005)

Organometallics
Categorization Criteria for P, B, and Non-Human iT

Persistence (P)
A substance is considered persistent if its transformation half-life satisfies the criterion in any one environmental medium or if it is subject to long-range transport.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>> 2 days</td>
</tr>
<tr>
<td>Water</td>
<td>> 6 months</td>
</tr>
<tr>
<td>Sediment</td>
<td>> 1 year</td>
</tr>
<tr>
<td>Soil</td>
<td>> 6 months (or LRT)</td>
</tr>
</tbody>
</table>

Bioaccumulation (B)
- BAF > 5000 or
- BCF > 5000 or
- log Kow > 5

Inherent toxicity (iT) – non-humans
- Acute aquatic toxicity of LC(EC)\(_{50}\) ≤ 1 mg/L, or a chronic aquatic toxicity of NOEC ≤ 0.1 mg/L
Categorization: Human Health Challenges

- Early recognition that legislative construct for categorization would not identify all priorities from human health perspective
- Persistence and Bioaccumulation not key determinants of potential to harm human health for all types of substances
- Other properties more relevant for some chemicals (e.g., reactive compounds)
 - \(P \) or \(B \neq \) human exposure
 - \(P \) or \(B \neq \) highest priorities for human health hazard
- Simple and complex tools developed to identify health priorities
The Simple Exposure Tool - SimET

- SimET was a relative ranking tool by which all substances on the Domestic Substances List were "binned"
- Maximal use of the limited, comparable data for all 23,000 DSL compounds
 - Prevented bias to data-rich compounds
- Based on three different lines of evidence:
 - quantity (estimated annual quantity of use, Q),
 - number of submitters (S)
 - use (sum of normalized expert ranked use codes, U, reflecting two workshops)
- Limited expert judgement
Simple Exposure Tool (SimET)

Quantity (Log)	Number of Submitters	Σ Use Code Indices
Q ≥10⁵ kg/yr | S 102 | U 13227

Relative Ranking for all DSL substances

Initial GPE list of 849 substances
Criteria for Greatest, Intermediate & Lowest Potential for Exposure

<table>
<thead>
<tr>
<th></th>
<th>Quantity (kg/year)</th>
<th>Number of Submitters</th>
<th>Sum of the Expert Ranked Use Code Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPE</td>
<td>> 100 000</td>
<td>Top 10%</td>
<td>Top 10%</td>
</tr>
<tr>
<td>IPE</td>
<td>> 10 000</td>
<td>n.a.</td>
<td>Top 30%</td>
</tr>
<tr>
<td>LPE</td>
<td>Remainder</td>
<td>Remainder</td>
<td>Remainder</td>
</tr>
</tbody>
</table>
ComET – the Complex Exposure Tool

- Provides plausible upper bound quantitative estimates of combined consumer (nearfield) & multimedia environmental (farfield) exposure by duration and age group, taking into account:

 - “Sentinel” product scenarios
 - Uses for a particular chemical likely to result in highest exposure
 - Concentrations in environmental media of human exposure estimated based on extension of fugacity modelling

*** ComET tool not fully developed during categorization exercise, but methodologies later incorporated into screening assessment work
Far Field & Near Field Exposures

- INHALATION
 - Industrial Atmospheric Releases
 - Uptake by organisms
 - Drinking Water
 - Bathing, Showering

- CROP AND ANIMAL PRODUCT EXPOSURE (ingestion, dermal)
 - Industrial Releases to Soil
 - Uptake by vegetation
 - Uptake by organisms

- AQUEOUS EXPOSURE (ingestion, dermal, inhalation)

- SOIL EXPOSURE (ingestion, dermal)

- CONSUMER PRODUCTS (ingestion, dermal, inhalation)
 - Spray Cleaners
 - Cosmetics
 - Paints
 - Adhesives
SimHaz Tool

- Applied to entire DSL

- Defined high or low hazard from classifications/assessments of other agencies based on weight of evidence

- Appropriate assessments selected based on comprehensiveness of review, peer review process, etc.
SimHaz Tool

• High Hazard Lists/Endpoints
 – Cancer (IARC, EU, HC, US EPA etc.)
 – Genotoxicity (EU)
 – Developmental Toxicity (EU)
 – Reproductive Toxicity (EU)

• Low Hazard Lists
 – PMRA 4a/US EPA 4a
 – OECD Low Concern
SimHaz Tool: Strengths and Limitations

• Strengths
 – Efficient
 • Took advantage of critical review of others
 – Consistency
 • Assessments/classifications internationally

• Limitations
 – Bias towards data-rich substances
• Hierarchical approach to consideration of:
 – Multiple endpoints relevant to characterization of hazard
 – Sources of relevant information
ComHaz Data Hierarchy

Chemical X

National / International Assessments and Reviews

Original Toxicological and Epidemiological Study Reports

QSAR

Expert Systems (SAR)

Chemical Categories

Surrogates / Analogues

Scientific professional judgement

Set Aside or Exposure-Response
ComHaz Tool – Endpoint-specific Criteria

(Example subset – oral, NOAELs)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Information Source</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>Data or (Q)SAR</td>
<td>Positive evidence</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>Data or (Q)SAR</td>
<td>Positive evidence</td>
</tr>
<tr>
<td>Regulatory/Reference Value</td>
<td>International & National Assessments</td>
<td>Ref Value ≤ 0.1 mg/kg bw/day</td>
</tr>
<tr>
<td>Developmental Toxicity</td>
<td>Data</td>
<td>NO(A)EL ≤ 90 mg/kg bw/day</td>
</tr>
<tr>
<td></td>
<td>(Q)SAR</td>
<td>Positive Prediction</td>
</tr>
<tr>
<td>Reproductive Toxicity</td>
<td>Data</td>
<td>NO(A)EL ≤ 10 mg/kg bw/day</td>
</tr>
<tr>
<td>Longer Term Toxicity</td>
<td>Data or (Q)SAR</td>
<td>NO(A)EL ≤ 10 mg/kg bw/day</td>
</tr>
<tr>
<td>Short Term Toxicity</td>
<td>Data</td>
<td>NO(A)EL ≤ 30 mg/kg bw/day</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>Data or (Q)SAR</td>
<td>LD$_{50} \leq 500$ mg/kg bw</td>
</tr>
</tbody>
</table>
Cancer

- Empirical data
 - Positive evidence = statistically significant increase in the incidence or prevalence of a specific tumour or an observed exposure-response relationship in animal or epidemiological study
 - Authors’ conclusions generally accepted
 - Mode of action not considered

- QSAR modelling
 - Positive evidence = a valid QSAR prediction of sufficiently high probability in relevant model
 - Guidance for application/interpretation of models developed
Genotoxicity

• Criteria took into consideration
 – Predictive strength wrt concern for human health of
 • Endpoint investigated
 • in vivo versus in vitro tests
 • test data versus (Q)SAR models

• Extensive internal and external consultation, including expert workshop

• Conservative “one positive hit” approach adopted for initial categorization

• Exception – “sufficient” negative in vivo mammalian data could outweigh positive in vitro data
 – Defined as “negative results in two or more in vivo tests for different assays in two different tissues”
Tests/Endpoints Which Provide Sufficient Evidence for Genotoxicity to Warrant Further Consideration

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Endpoint</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo mammalian</td>
<td>Germ cell mutagenicity</td>
<td>Specific locus test, Transgenic mutation systems</td>
</tr>
<tr>
<td></td>
<td>Germ cell clastogenicity or aneugenicity</td>
<td>Dominant lethal test, Heritable translocation test, Chromosomal aberrations in spermatocytes or spermatogonia, Spermatid micronucleus (centromere +ve or -ve), Oocyte cytogenetics, Sperm FISH assay, Abnormal chromosome segregation</td>
</tr>
<tr>
<td></td>
<td>Germ cell DNA damage or repair</td>
<td>DNA adducts, Unscheduled DNA synthesis, Comet assay, Strand breaks</td>
</tr>
<tr>
<td></td>
<td>Somatic cell mutagenicity</td>
<td>Mouse coat colour spot test, Transgenic mutation systems, Hprt mutations</td>
</tr>
<tr>
<td></td>
<td>Somatic cell clastogenicity or aneugenicity</td>
<td>Chromosomal aberrations in bone marrow or peripheral blood of rodents, Micronuclei (centromere +ve or –ve) in bone marrow, peripheral blood or liver of rodents, Non-disjunction using FISH, Chromosomal aberrations in lymphocytes of exposed humans, Micronuclei (centromere +ve or –ve) in lymphocytes of humans</td>
</tr>
<tr>
<td></td>
<td>Somatic cell DNA damage or repair</td>
<td>DNA adducts, Unscheduled DNA synthesis, Comet assay, Strand breaks</td>
</tr>
<tr>
<td></td>
<td>Mutagenicity</td>
<td>Drosophila sex-linked recessive lethal test, Drosophila wing spot test</td>
</tr>
<tr>
<td>In vivo non-</td>
<td>Mutagenicity</td>
<td>Bacterial (Salmonella or E. coli), Mouse lymphoma TD assay, Hprt mutations, Human TK6 mutations</td>
</tr>
<tr>
<td>mammalian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro</td>
<td>Mutagenicity</td>
<td>Bacterial (Salmonella or E. coli), Mouse lymphoma TD assay, Hprt mutations, Human TK6 mutations</td>
</tr>
<tr>
<td></td>
<td>Clastogenicity or aneugenicity</td>
<td>Chromosomal aberrations in human lymphocytes or rodent cells, Micronuclei (centromere +ve or –ve) in human or rodent cells, Mouse lymphoma assay (small colony mutants), Non-disjunction by FISH in human or rodent cells</td>
</tr>
<tr>
<td></td>
<td>DNA damage or repair</td>
<td>DNA adducts unscheduled DNA synthesis, Comet assay, Strand breaks</td>
</tr>
</tbody>
</table>
Test Types Which **Do Not** Provide Sufficient Evidence for Genotoxicity to Warrant Further Consideration (indicator tests)

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo mammalian</td>
<td>Sperm abnormality
SCE or somatic cells
Host mediated assays
Inhibition of DNA synthesis</td>
</tr>
<tr>
<td>In vivo non-mammalian</td>
<td>Fish, plants, amphibians and birds</td>
</tr>
<tr>
<td>In vitro</td>
<td>SCEs
Host mediated assay
Cell transformation
SOS assay
Aneuploidy in yeast
Inhibition of DNA synthesis</td>
</tr>
</tbody>
</table>
Regulatory Values

- Reference values or regulatory limits established by acceptable national or international agencies for provision of guidance for regulatory, advisory or risk management purposes

- Included:
 - Tolerable Intakes/Concentrations (TIs/TCs), Acceptable Daily Intakes (ADIs), Reference Doses/Concentrations (RfCs/RfDs) or Minimal Risk Levels (MRLs) for lifetime exposure on the basis of an effect level established for non-neoplastic effects observed in epidemiological investigations or studies in experimental animals.

- Not Included:
 - Reference values established for less than lifetime exposures (e.g., Acute Reference Dose, Acute Minimal Risk Level, Intermediate Minimal Risk Level, etc.) are not considered for the purposes of prioritization
 - Regulatory or reference values developed for occupational exposures (e.g., Threshold Limit Value, Recommended Exposure Value, Short Term Exposure Limit, etc.)
ComHaz Tool: Strengths and Limitations

• Strengths
 – Health protective
 – Comprehensive
 – High confidence in “set asides”
 – No bias towards data rich substances
 – Designed for high throughput
 – Takes advantage of critical reviews of others
 – Significant contribution of QSAR component to priority setting
 – External input, consultation, peer review

• Limitations
 – Resource intensive
Results of Categorization

• Categorization/Prioritization completed in September 2006

• Identified priorities for further work/action based on concern for:
 – Environment
 – Human Health
 – Environment & Human Health

• Of the 23,000 substances on the DSL, 4300 identified as priorities
 – 4000 met the categorization criteria
 – 300 warranted further attention from a human health perspective
Combined Categorization Results

<table>
<thead>
<tr>
<th>Eco</th>
<th>Health</th>
<th>GPE or IPE and HH</th>
<th>IPE</th>
<th>GPE</th>
<th>HH</th>
<th>Do not meet health criteria</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBiT</td>
<td></td>
<td>26</td>
<td>22</td>
<td>4</td>
<td>16</td>
<td>325</td>
<td>393</td>
</tr>
<tr>
<td>PiT or BiT</td>
<td></td>
<td>80</td>
<td>189</td>
<td>89</td>
<td>64</td>
<td>2400</td>
<td>2822</td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
<td>3</td>
<td>207</td>
<td>63</td>
<td>11</td>
<td>2679</td>
<td>2963</td>
</tr>
<tr>
<td>Do not meet eco criteria</td>
<td></td>
<td>192</td>
<td>1206</td>
<td>449</td>
<td>249</td>
<td>14041</td>
<td>16137</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>301</td>
<td>1624</td>
<td>605</td>
<td>340</td>
<td>19445</td>
<td>22315</td>
</tr>
</tbody>
</table>

- **Meet categorization criteria**
- **Do not meet criteria, but further consideration**
- **Do not meet criteria**
The Way Forward

- Categorization set the stage for assessing and managing chemicals in Canada, having provided the basis for an informed targeted approach to address the highest priorities from an ecological and/or human health perspective.

- The next step:

 Launch of Canada’s Chemicals Management Plan (CMP) in December 2006
Prioritization & Assessment: Past & Future

- Capitalize on past efforts to move forward on these substances through strengthened partnerships inside and outside the federal government to ensure the most efficient and effective protection of Canadians and their environment
 - Program expertise
 - Experienced stakeholder engagement relationships
 - Targeted legislative design
 - Triggers process for emerging priorities
QUESTIONS?