Webinar Measles reemergence: update on clinical, surveillance and vaccination

Tun Tuesday,
19 March 2024
(L) 10:00-12:00
Zoom
ID 81312466930

Housekeeping rules

- This session has simultaneous interpretation, please use the

Interpretation GLOBE icon to select your language of preference

- Please use the CHAT icon to communicate any technical / audio issue
- Please use the QA icon to submit your questions only

Presentations and recording of the webinar will be available tomorrow at the below link:
https://www.paho.org/en/events/webinar-measles-reemergence-update-clinical-surveillance-andvaccination

Webinario

 Reemergencia del sarampión: actualización en la clínica, la vigilancia y la vacunaciónM Martes
(L) 10:00-12:00 Hora de Washington D.C.
(O) Vía Zoom

ID 81312466930

Avisos importantes

- Esta sesión tiene interpretación simultánea, use el ícono del GLOBO para seleccionar su idioma de preferencia
- Utilice el ícono CHAT para comunicar cualquier problema técnico o de audio
- Las preguntas deben enviarse únicamente mediante el ícono del QA

Las presentaciones y grabación del webinario estarán disponibles mañana en el siguiente enlace:
https://www.paho.org/es/eventos/webinario-reemergencia-sarampion-actualizacion-clinica-vigilancia-vacunacion

Webinar:
Measles reemergence: update on clinical, surveillance, and vaccination.
$14^{\text {th }}$ March 2024

The Return of Measles to the Americas

Global and regional epidemiological update

Gloria Rey-Benito
Desiree Pastor
Regional Advisors, CIM
PAHO/WHO

Outline

1. Why measles matters?
2. How can we know the risk in each country?
3. What do we need to do now?

Measles cases are increasing everywhere

Cases reported to WHO increased by 79\% in 2023 versus 2022.
And 2024 may be worse than 2023.

Data reported as of February 2024

Large* or disruptive measles outbreaks increased in 31\% in 2023

Number of countries
reporting large outbreaks 2022
increased from 32 in 2022 to 51 in 2023.

Increase observed in
European (9) and Eastern
Mediterranean (13)
regions.

Even though a vaccine is available, deaths from measles continue to occur

Measles deaths don't happen equally everywhere

\checkmark Estimated 136,216 measles deaths in 2022, mostly in children resulting in a 43% increase compared with 2021.
$\checkmark \mathbf{9 2 \%}$ deaths occurred in $\mathbf{2 4 \%}$ of the world's population.
\checkmark Deaths in 2023 are likely to have increased further because more measles cases were reported.

- African
- Americas

■ Eastern
Mediterranean
■ European

■ South East Asian

- Western Pacific
region

Outline

2. How can we know the risk in each country?

Measles cases drastically rise in the Americas in 2024

Total cases reported as of epi-week 11 of 2024 exceeded the final measles count of 2023 by 28\%

2024	
Countries	No of cases
Argentina	3
Bolivia	1
Brazil	1
Canada	26
Mexico	1
Peru	2
United States	58

Total: 92

Characteristics of measles outbreaks in the Americas, 2024* $(\mathrm{N}=75)^{* *}$

Vaccination status (\%)

Source: ISIS and country reports.
*Data as of epidemiological week 11.
**Case by case data available for 75 cases.

Not all countries have improved the sensitivity of their epidemiological surveillance systems post COVID-19

63\% of countries/territories have achieved the annual reporting rate in 2023 in comparison of 2019

Central America, Mexico, Cuba, Haiti, and Dominican Republic

CtryCode	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
CUB	34.27	13.94	6.47	14.22	21.20
SLV	8.57	2.94	5.59	9.00	9.30
DOM	1.79	0.42	0.30	1.26	2.50
HTI	1.84	1.25	1.42	1.64	2.24
NIC	10.48	1.90	2.04	2.12	2.19
CRI	2.04	2.04	0.39	1.24	1.96
HND	3.95	1.19	0.52	1.40	1.86
PAN	1.58	0.70	0.60	0.77	1.81
MEX	4.00	1.94	1.11	1.99	1.70
GTM	2.10	0.41	0.51	0.92	1.27

Andean Region,
Southern Cone, and Brazil

CtryCode	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
PRY	$\mathbf{2 2 . 2 6}$	8.02	8.70	9.73	22.46
VEN	7.21	3.29	4.80	7.23	7.34
COL	8.78	1.45	2.01	2.21	3.25
ECU	3.54	1.29	1.34	2.29	3.07
BOL	1.45	1.18	1.06	2.07	1.76
CHL	4.27	0.26	0.24	1.53	1.12
BRA	32.08	8.29	1.30	1.77	1.02
ARG	3.72	0.76	0.32	2.00	0.71
PER	1.71	0.23	0.22	0.37	0.52
URY	2.05	0.32	0.00	0.12	0.18

Regional

	2019	2020	2021	2022	2023
Total**	14.13	3.93	1.44	2.32	2.35

** Canada and USA not included

CtryCode	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
BRB	4.53	4.18	1.42	2.49	18.79
AIA	0.00	0.00	0.00	0.00	6.28
GRD	1.79	4.44	0.00	0.80	4.75
KNA	1.87	0.00	0.00	0.00	4.19
TCA	0.00	0.00	0.00	0.00	2.17
BHS	1.54	0.00	0.00	0.24	0.73
JAM	8.31	0.98	0.28	0.85	0.53
BLZ	8.97	0.50	0.25	1.48	0.49
SUR	1.03	0.00	0.00	0.00	0.16
GUY	5.49	0.89	0.00	2.84	0.12
ABW	0.00	0.00	0.00	0.00	0.00
ATG	2.06	0.00	0.00	0.00	0.00
CUW	0.61	0.00	0.00	0.00	0.00
CYM	1.65	0.00	0.00	0.00	0.00
DMA	1.35	0.00	0.00	0.00	0.00
LCA	2.19	0.00	0.00	0.00	0.00
MSR	18.72	0.00	0.00	0.00	0.00
SXM	0.00	0.00	0.00	0.00	0.00
TTO	0.72	0.00	0.00	0.00	0.00
VCT	0.00	0.00	0.00	0.00	0.00
VGB	0.00	0.00	0.00	0.00	0.00
BMU	0.00	0.00	0.00	0.00	0.00

Pandemic hits: Measles vaccine coverage not recovered by 2022

Measles first dose (MCV1) coverage 3% below the pre-pandemic peak of 86% 86% too low to prevent the epidemics of 2019

The COVID-19 pandemic further accentuated the pre-pandemic trend in the decline of MMR1 and MMR2 coverage. Still a decrease with a first dose?

Many countries have not reached pre-pandemic measles coverage levels, and many are getting worse

Outline

3. What do we need to do now?

PAHO's Microplanning (MP) Methodology Applied to Vaccination Campaigns and Routine Immunization Program (RI). Region of the Americas, 2021-2023

COUNTRIES	START YEAR	MICROPLANNING METHODOLOGY APPLIED FOR FOLLOW UP VACCINATION CAMPAIGNS 2021-2023	MICROPLANNING METHODOLOGY APPLIED FOR ROUTINE IMMUNIZATION PROGRAM 20222023	MICROPLANNING METHODOLOGY FOR FOLLOW UP CAMPAIGNS 2024 OR RIP
COLOMBIA	2021			
MEXICO	2021			
ARGENTINA	2022			
BRASIL	2022			
BOLIVIA	2022			
EL SALVADOR	2022			
HONDURAS	2022			
NICARAGUA	2022			
R.DOMINICANA	2022			
PARAGUAY	2022			
VENEZUELA	2022			
ECUADOR	2023			
PANAMA	2024			
COSTA RICA	2024			
GUATEMALA	2024			

Enhancing surveillance \& response E-learning training on measles outbreak response

Rapid response to measles outbreak in the Americas

Measles outbreak in the post elimination era: Case study

https://www.campusvirtualsp.org/es/curso/brote-de-sarampion-en-la-era-post-eliminacion-estudio-de-caso-2022

The essential actions to implement now

RESPONSE	SURVEILLANCE			VACCINATION	
Reactivate	Enhance	Map	Obtain	Implement	Maintain
the rapid response teams, which should be adequately trained, and implement coordinated national rapid response protocols.	epidemiological surveillance in high-risk areas (e.g., border municipalities) and with epidemiological silence by implementing complementary field activities (e.g., active searches).	internal and external migration routes in each country. Conduct risk assessment analysis to prioritize high-risk municipalities	serum samples, nasopharyngeal swabs, and urine samples for laboratory diagnosis and genomic sequencing.	vaccination activities in highrisk municipalities as soon as possible, using an adequate microplanning in the routine program.	Maintain a stock of MR/MMR vaccines, syringes and supplies for prevention and control actions in the event of imported cases.
Prevent nosocomial transmission by having an adequate referral flow of patients to isolation rooms.					

ACKNOWLEDGMENTS

- Health workers of the region
- Regina Duron, CIM
- Carilu Pacis, CIM
- Pamela Bravo, CIM
www.paho.org/immunization

Backup slides

Countries managed to implement follow-up vaccination campaigns amidst the COVID-19 Pandemic

More than 36 million children aged 1 to 12 years were vaccinated between 2021-2023

COUNTRY	POPULATION	GOAL	VACCINATED POPULATION	\% COVERAGE
FOLLOW UP VACCINATION 2021				
MEXICO	$\begin{aligned} & 1-4 Y \\ & 1-9 Y \end{aligned}$	$\begin{aligned} & 8,613,162 \\ & 3,009,232 \end{aligned}$	8,268,636 MR 2,934,149 MMR	$\begin{aligned} & 96 \\ & 97 \end{aligned}$
COLOMBIA	1-10 Y	7,588,401	7,133,097	95
BOLIVIA	1-6 Y	1,181,729	1,049,830	88
PARAGUAY	1-6 Y	845,865	559,840	66
FOLLOW UP VACCINATION CAMPAIGNS 2022				
ARGENTINA	$13 \mathrm{Ma}<5 \mathrm{Y}$	2, 315,692	1,531,840	67
BRAZIL	$12 \mathrm{Ma}<5 \mathrm{Y}$	12,927,057	6,204,098	48
EL SALVADOR	1-6 Y	544,089	495,121	91
HONDURAS	1-6 Y	1,195,147	955,122	83
NICARAGUA	1-5 Y	788,190	859127	109
REPUBLICA DOMINICA	1-5 Y	954,554	906,836	95
VENEZUELA	1-6 Y	2,692,674	2,046,432	88
FOLLOW UP VACCINATION CAMPAGINS 2023				
ECUADOR	1-12 Y	3,189,901	3,119,884	98

In 2021, four countries vaccinated 19.9 million children aged 1 to 10 years. In 2022, seven countries vaccinated more than 12.9 million children aged 1 to 6yo In 2023, Ecuador has vaccinated a total of 3,2 million children aged 1 to 12 years.

OTHER RECOMMENDATIONS for vaccination against measles and rubella

1. Travelers: prior departure, during the trip, and upon returning.
2. Clinicians and health care providers
3. Persons and institutions in contact with travelers, before and/or after trip
4. Contact tracing of confirmed measles cases

Clinical aspects of measles and rubella and main differences with other febrile and rash diseases

Tracy Evans- Gilbert MD, MPH
CTropmed ${ }^{\text {B }}$

Outline

- The clinical course of measles
- Measles complications
- Differential diagnosis
- Treatment

Measles Virus is highly contagious

- Reproduction rate of measles surpasses other infectious diseases such as Hepatitis C , Ebola ,HIV,SARs and parotitis

Period of infectivity and isolation precautions

Day 0 is rash onset

Infected Host

Airborne transmission precautions are indicated for 4 days after the onset of rash in the healthy host.

Exposed Contact

Exposed susceptible patients should be placed on airborne precautions from day 5 after first exposure until 21 days after last exposure.

DAY OF LLNESS	$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
RASH	
KOPLIK'S	
CONLUNCTMTIS	
CORYZA	\%
COUGH	

Prodrome

- Cough
- Coryza
- Conjunctivitis
- Fever
- Malaise
- Lasts 4-7 days

Photo Credit Centers for Disease Control and Prevention

Koplick Spots

Premolar

- Tiny red spots with bluish-white centers inside the mouth on the lining of the cheek
- Appear 2-3 days before rash and fade 1-2 days later.

- On first day of rash solitary lesions on face appears, 2-4 days after the prodrome.

Credit Col Marty Weisse MD West Virginia University Medicine Children's Hospital

Begins at the hairline, then involves the face and upper neck

Day 2-3

- Facial rash becomes confluent
- Lesions appear on the trunk

Photo Credit Col Marty Weisse MD West Virginia University Medicine Children's Hospital

Measles case in a 7 -year-old child, detected in Latin America

- Spreads and head-to-toe
- Proceeds downward and outward to hands and feet

Morbilliform rash

- Confluent erythema with lakes of normal skin
- Blanches on pressure
- By day 3, the whole body is involved
- Rash lasts 5 to 6 days
- Severe areas peel off in scales

Desquamation

 period- Fades in order of appearance

Imported measles case in an adult female

Measles case in a teenager from Latin America

Complications

- Children < 5 years old

Risk groups

- Adults > 20 years old
- Pregnant women
- Malnutrition, immunodeficiencies
- 1 to 3 per 1,000 cases reported will die from respiratory or neurologic disease.
Death
- Outcomes are worse among the elderly, infants 6-11 months, malnourished or immunocompromised

Complications

Respiratory

Neurologic

- Pneumonia occurs in 1-6 \%
- Pneumonia cases 60% of measles deaths
- Due to direct invasion or secondary bacterial infection (Staphylococcus aures and Strep pneumoniae.
- Otitis media, sinusitis, croup

Acute measles encephalitis

- More common in adults than in children
- 1 in 1,000 to 2,000 patients
- Characterized by fever during the convalescent phase, headache, seizures, and altered consciousness.

Subacute Sclerosing Panencephalitis

- Past history of measles at a young age <2
- 1 in 100,000
- About 7-10 years after illness
- Personality change, myoclonic seizures, motor disturbance, coma and death

Complications

Severe measles among a malnourished female from Yanomami tribe in the Amazon

Malnourished child

- Desquamation may be deeper and lead to depigmentation, skin breakdown, and infection.
- Severe fulminant measles present with hemorrhagic skin lesions, DIC... Death.

Pregnant women

- Measles can result in the baby being born prematurely with a low birth weight.

- Keratomalacia in a malnourished child with measles.
- Acute measles precipitates vitamin A deficiency leading to more severe ocular injury.
- Vitamin A supplementation given to children with measles is associated with better outcomes.

Modified measles

- Occurs in patients with passive immunity
- Recent immunoglobulin
- Infants with passive maternal transfer
- History of vaccination

Clinical Infectious Diseases
MAJOR ARTICLE

Clinical Characteristics of Measles in Previously
Vaccinated and Unvaccinated Patients in California James 0 . Charry' and Mant Zamin ${ }^{2}$

Clinical Presentation:

- Mild prodrome
- Cough and fever, may have no conjunctivitis
- Sparse, discrete rash of short duration
- Transmission of measles in secondary vaccine failure is rare
- Cases still required the same amount of public health effort in tracing contacts as in cases who were unvaccinated
- Measles case among a 40-year-old known vaccinated, $3^{\text {rd }}$ day of rash. Detected in Latin America

Imported measles case among a 57 -year-old from Europe. The case contracted the wild virus in childhood.

Notification of measles

Prompt notification of measles, and rubella ensures public health action can be taken promptly.

Notification should be based on clinical suspicion and should not await laboratory confirmation

Surveillance should use the case definition of fever and rash

Clinical diagnosis is not sufficient to confirm infection, so laboratory confirmation is vital

Type of sample	Minimum time to obtain	Maximum time to obtain	Obtaining the sample	Objective
Sample 1 Serology Blood (serum)	At the $1^{\text {st }}$ contact of the suspect case	Up to 30 days from the onset of the rash	$5-8 \mathrm{~mL}$ of blood, in sterile tube, without anticoagulant, centrifuge and separate serum	Detection of IgM antibodies
Sample 2 Nasopharyngeal / Pharyngeal	$1^{\text {st }}$ day of the rash onset	Up to 7 days from the onset of the rash	In medium viral transport (MVT)	Isolation of the virus and identification of the genotype
Sample 3 Urine	$1^{\text {st }}$ day of the rash onset	Up to 7 days from the onset of the rash	In sterile bottle, well labeled. Keep cold chain $\left(2-8^{\circ} \mathrm{C}\right)$. Complete notification form	Isolation of the virus and identification of the genotype

Comparison of clinical and epidemiological characteristics of measles and its differential diagnoses

Disease	Measles	Rubella (${ }^{\text {a }}$)	Roseola (exhantema subitum)	Erythema infectiosum	Dengue	Chikunguna	Zika
Etiology	Paramyxoviridae, genus Morbillivirus	Togaviridae, genus Rubivirus	Betaherpesviridae, genus Roseolovirus (human herpes virus 6)	Parvoviridae, genus Erythrovirus (human parvovirus B19)	Flaviviridae, genus Flavivirus	Togaviridae, genus Alphavirus	Flaviviridae, genus Flavivirus
Incubation period (days)	7-21	12-23	5-15	4-20	3-14	4-7	2-7
Fever	Yes	Yes	Yes	Yes	Yes	Yes	May appear
Characteristics	High fever	Low grade fever or afebrile	Abrupt and high fever	Low grade fever or afebrile	Mild, occasionally biphasic	High fever	Low grade fever or afebrile
Rash	Si	Yes	Yes	Yes	Frequent	Frequent	Yes
Characteristics	Maculopapular	Maculopapular	Maculopapular	Macular/ Maculopapular	Maculopapular	Maculopapular	Maculopapular
Distribution	Cephalocaudal	Cephalocaudal	Thorax and abdomen	Cephalocaudal	Centrifugal	Cephalocaudal, intensely pruritic	Cephalocaudal, intensely pruritic
Cough	Frequent	No	No	No	No	No	No
Coryza	Frequent	May appear	Yes	Yes	No	No	No
Conjunctivitis	Frequent	May appear	No	No	May appear	May appear (b)	Yes
Arthralgia	No	Frequent	No	May appear (adults)	Frequent	Yes	Frequent
Lymphadenopathy	No	Frequent	May appear	May appear	No	May appear Postauricular	May appear Postauricular

Measles vs. Rubella

pay of Iurss	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
RASH	
KOPLIK'S	
conunctatis	1
CORYZA	Nors
COUGH	

Rubella

- Posterior cervical adenopathy
- Rash is splotchy on first day, will become pinpoint as it moves down the body

Erythema Infectiosum or fifth's disease

- Caused by Parvovirus B19
- Characterized by fever, rhinorrhoea, headache and rash (slapped cheek)

Dengue vs measles

- "Islands of white" in a sea of red
- Confluent erythema with lakes of normal skin

Zika virus vs measles

Zika

- Slight fever with cephalocaudal, itchy rash

Measles

- Intense and continuous fever, cephalocaudal , morbilliform rash preceding prodrome

Photo Credit Col Marty Weisse MD West Virginia University Medicine Children's Hospital

Treatment

- Supportive- Nutrition, fluids, prodromal symptoms
- Vitamin A- once daily. Two doses
- IVIG- within 6 days of exposure to immunocompromised, <6 months; nonimmune pregnant women
- Measles vaccine given within 72 hours of measles exposure to all vaccineeligible unvaccinated or single-dose vaccinated individuals

Vitamin A

Administration of Vitamin A - reduces severity / lethality

- Give vitamin A (unless previously treated)
< 6 months: 50,000 IU po
6-11months: 100,000 IU po
≥ 12 months: $\mathbf{2 0 0 , 0 0 0}$ IU po
- Once daily for 2 days
- Children with clinical signs of vitamin A deficiency receive an agespecific dose in 2 weeks.

Take away messages

- Measles is highly contagious.
- Complications occur in 30% of infected person.
- Outcomes are worse among infants 6-11 months, malnourished; immunocompromised.
- Dengue fever does not present respiratory symptoms, which are common in measles.
- Consider secondary vaccine failure among symptomatic vaccinated persons with mild symptoms.
- Ensure prompt notification on clinical suspicion.
- Find and vaccinate every susceptible person, ensure fever rash surveillance and highquality outbreak response

Measles reemergence: update on clinical, surveillance, and vaccination.
$14^{\text {th }}$ March 2024

Epidemiological surveillance field actions to improve system sensitivity

Gloria Rey-Benito
CIM $/$ PAHO/WHO

(c) 5^{2} (3) $=x=$

Outline

1. Essentials of routine surveillance for measles
2. Risk assessment for measles
3. Active case finding

The Measles Virus

Taxonomy

Imagen: https://www.tododiagnostico.com/enfermedades-
infecciosas/vigilancia-epidemiologica-del-sarampion/
Genus: Morbillivirus
Family: Paramyxoviridae
RNA- single stranded

Survival

Transmissibility

Person-to-person transmission by respiratory droplets, when the infected person coughs or sneezes; or direct contact with infected secretions

Person-to-person transmission by
respiratory droplets, when the infected
person coughs or sneezes; or direct
contact with infected secretions

The virus remains active in the air for up to 2 hours in a radius of 2-4 meters.

Only one serotype with 24 genotypes: the measles containing vaccine is effective against all $\mathbf{2 4}$ genotypes.

Suspected*
 case definition for measles and rubella

Presence of arboviral (dengue) outbreaks or other febrile and rash illnesses

Travel history

Contact with people that have traveled to countries with measles circulation

Sensitivity of the system

Detection of at least $\mathbf{2}$ suspected MR cases per 100,000 population

Performance indicators for measles and rubella (MR) surveillance

Adequate case investigation	$\geq 80 \%$ of suspected cases adequately investigated during the first 48 hours post notification and with completeness of $\mathbf{8}$ out of 11 core variables
Adequate serum sample collection	$\geq 80 \%$ of cases with serum sample collection within $\mathbf{3 0}$ days after onset of rash
Timely arrival of samples	$\geq 80 \%$ of serum samples receiving at the laboratory in $<=5$ days after collection
Timely laboratory results	$\geq 80 \%$ of serum samples with laboratory results reported in <= 4 days following reception at testing laboratory

Regional Performance of Measles-Rubella Surveillance Indicators Latin America and the Caribbean Countries, 2019-2023*

2. Risk Assessment for measles and rubella

The PAHO Risk Assessment Tool for Measles and Rubella

- Identify at-risk municipalities for MR, to prioritize the implementation of corrective measures in immunization and surveillance areas.
- Risk was assessed as the sum of indicator scores of 5 categories: population immunity, quality of surveillance, threat assessment and rapid response.
- Countries should conduct the risk assessment on annual basis, to develop a tailored plan aim to close the detected gaps in the prioritized municipalities.
- Ongoing monitoring and field supervision is strongly encouraged, to ensure the quality of the interventions.

Outline

3. Active case finding

What is active search?

- The active search for cases of acute flaccid paralysis (AFP), measles and rubella (MR) is a surveillance strategy carried out in health services, laboratories, and communities.
- In this type of surveillance, the health team goes to the source of information to conduct an intentional retrospective search for cases that meet the definition of probable AFP and suspected MR cases, which were or were not notified to the routine surveillance system.
- This type of surveillance does not replace routine passive surveillance because it does not guarantee timely notification of cases.

The active search can be implemented by a multidisciplinary team at the national and subnational levels comprised by medical, epidemiological and nursing personnel.

Types of active search

Institutional

Systematic review of medical records in public and private health services，corresponding to a given period．

Community

Search for cases in the community through interviews with parents or guardians，community leaders，and other social actors．

Laboratory

Search for biomarker of acute infection in serum specimens obtained for surveillance of dengue or other arboviral diseases．This type of search is performed for measles and rubella．

During institutional active search, medical records should be selected with:

1. Description of signs and symptoms according to the case definition for the surveillance of these diseases.
2. Differential clinical diagnoses of the targeted disease (ICD-10 o ICD-11).

During community active search, cases are identified through interviews with the support of photographs, infographics, among others.

How are municipalities selected?

For the final selection of municipalities, countries should consider the presence of one or more risk factors (e.g., high influx of tourists) PLUS logistical aspects: distance, transport, safety conditions, etc.

Scenarios to conduct the laboratory active case search

In silent areas/municipalities

At the onset of an outbreak

When closing an outbreak

The sera selected for MR IgM testing, for any of the above-mentioned scenarios, should meet ALL the following criteria:

1. case presented fever and rash;
2. serum of a probable case of dengue or another arboviral disease;
3. serum was negative for dengue or another arboviral disease;
4. serum was obtained 30 days before IgM testing for MR
5. case presented fever and rash;
6. serum of a probable case of dengue or another arboviral disease;
7. serum was negative for dengue or another arboviral disease;
8. serum was obtained 30 days prior to onset of rash of index case
9. Samples were obtained in the same municipality where index case was confirmed.
10. case presented fever and rash;
11. serum was negative for dengue or another arboviral disease;
12. serum of a probable case of dengue or another arboviral disease, from areas where MR cases were confirmed
13. serum was obtained within 12 weeks following the last confirmed MR case

Take away messages

03

In silent settings or with a low notification rates, high-quality active case search should be implemented every $\underline{3}$ months.

04

Institutional active search should be done using the ICD-10 or ICD-11*. Laboratory active search should be done periodically during dengue epidemics.
*If the diagnosis is not found, the search should be made based on typical signs and symptoms of the disease.

Acknowledgements:

- Pamela Bravo
www.paho.org/immunization

Differential diagnoses	ICD-10	ICD-11
Measles Rubella	B05	B06

Differential diagnoses of MR

Operational definition: Patient suspected by a health care worker of having measles or rubella, or presenting with fever and maculopapular rash.

Example of a photo of a measles case*.

Actions in vaccination to increase the levels of population immunity

Desiree Pastor | Regina Durón

Outline

1. Why timely vaccination is so important?
2. How many countries are at high risk to spread measles virus?
3. What do we need to do now?

The measles virus will find every child unvaccinated as it did in the major outbreaks between 2017 and 2020!

Number of children 1-year-old (x 1,000) that did not receive MMR first dose on time at one year of age. Latin American and Caribbean countries*, 2012-2022

The earlier we vaccinate children with two doses, the better protected they will be. The Americas, 2023

15

5 Countries

- Months
- Bahamas (15 M)
- Brazil (15 M)
- EL Salvador ($\mathbf{1 5}$ M -18 M)
- Haiti (12-23 M)
- Uruguay (15 M)

- Antigua and Barbuda, Barbados, Belize, Bolivia, Canada, Colombia, Dominica, Dominican Republic, Ecuador, Grenada, Guatemala, Guyana, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, St. Kitts and Nevis, St. Lucia, St. Vincent, Suriname, Trinidad and Tobago, Venezuela.

- Argentina (Y5)
- Costa Rica (Y4)
- Chile (36 M)
- Cuba (Y6)
- United States (Y4)

Outline

How many countries are at high risk to spread measles virus?

One of the most important challenges is not having high vaccination coverage

 MMR1 vaccination coverage, Region of the Americas, 2022

Source: WHO/UNICEF Joint Immunization Reporting (eJRF) e-Reporting Form, 2023.
MMR1- measles-rubella-mumps first dose

* Countries reporting coverage data $>100 \%$

And the situation is worst with MMR2 vaccine! Region of the Americas, 2022

Source: WHO/UNICEF Joint Immunization Reporting (eJRF) e-Reporting Form, 2023.
MMR2- measles-rubella-mumps second dose

* Countries reporting coverage data $>100 \%$; USA not reported MMR2 data.

Results of Follow-Up Vaccination Campaigns

 against Measles Rubella: Population Immunity Gained in 20 Years!

- In the period 2003-2022, 27 countries conducted 62 CVS vaccinating 95,509,979 between 1 -10yo

- In 2021 and 2023, 11 countries vaccinated 36 million children, aged 1-10yo, with MR/MMR.

Outline

What do we need to do now?

The minimum planning to ensure success in a high-quality campaign is 4-6 months!!!!!!

Months before CVS or high-quality intensification

12	11	10	9	8	7	6	5	4	3	2	1

PLANNING

EXECUTION

 and Local Committees
ORGANIZATION

Formation of National, Sub-national

TRAINING

National, Sub national and Local leve

MICRO PLANNING

Terrain Reconnaissance \& Adjustments

EVALUATION WITH QUALITY CRITERIA

Final report - according to model structured according to OPS
format
National, Sub national and Local level

Application and use of Micro Planning

Stage 1

Analysis of the local situation with

 geographical, socioeconomic and demographic characteristics, as well as those related to the health service, target population, installed capacity of human resources, materials, equipment and logistics for decisionmaking.

It generates data that needs to be entered into the official information systems, organization, debugging, verifying inconsistencies and duplication.

Los datos estructurados permiten actualización y modificación, a nivel local, por barrio, distrito

Prioritization of socially determinant actions, analysis of susceptibilities

In this step, all actions are aimed at identifying the unvaccinated population, both in the routine program and in the quality CVS to define and execute vaccination actions such as vaccine screening, intensification or contingency plans implemented in the UBS, localities and municipalities that do not achieve homogeneous coverage $\geq 95 \%$ to capture the target population and achieve coverage according to the established goal.

STEP
 Mapping, sectorization and georeferencing

Identification of pockets of susceptible population,

Prioritization of localities according to risk and target population,

Compliance with indicators Identification of strengths, weaknesses, opportunities, and threats and Fulfillment of daily, weekly and monthly goals,

Delimitation and sectorization of neighborhoods and localities,

Availability and elaboration of maps and sketches by locality with population information, including:
geographical, demographic, socio-economic, inhabited and uninhabited dwellings, and Target Population by Age.

STEP Defining Vaccination Tactics

Identification of vaccination tactics according to the intraor extramural strategy;

Determination of the percentage of the population for each strategy and tactic to be used.

Modification in the micro-planning process at the local level,

Established geographic areas of responsibility for each team and day of high-quality CVS.

STEP Requirements Calculation

Calculation of needs according to target population by simple age,

Type of vaccine in CVS syringes, supplies and cold chain.

Performance of the vaccination resource according to: vaccination strategy and tactics adopted, 6-hour workday

Organization of vaccination teams.

Formulate weekly and daily work plan High-quality CVS action plan.

Schedule of activities, assigning managers, resources and logistics determination of dates, places and educational institutions, vaccination tactics,

Target Population, Transport and Contact

The follow-up guides all the steps to measure progress in achieving the vaccination goals and epidemiological surveillance, compliance with the indicators of efficacy, homogeneity, timeliness and efficiency of the QALY, identification of the vaccinated and unvaccinated population, which will allow decision-making and timely implementation in real time.

STEP
Rapid Vaccination Monitoring

Identify the vaccination status of the target population, in an area, sector or neighborhood of the municipality,

Search for vaccinated and unvaccinated in the field, in a short period of time, that allows the identification of the unvaccinated population.

Results allow decision-making on the definition or redefinition of additional vaccination strategies,

Improves vaccination coverage, homogeneity, and consequently reduces the susceptible population.

STEP
Analysis of pockets of susceptible

Identification of the unvaccinated population, both in the routine program and in the high-quality CVS,

Intensification of contingency plans in the US, localities and municipalities that do not achieve homogeneous coverage $\geq 95 \%$,

Capturing the unvaccinated target population and increasing the target

The evaluation process is carried out in three stages: Before: to verify the preparation phase of QALYs During: verifying compliance with the action plan, and the performance of vaccinators After: evaluating compliance with objectives and targets, indicators and identification of susceptible foci

STEP

Súpervision

Oversight: a process of planning and evaluation of QALYs across all components,

Use of techniques and instruments to monitor efficiency, homogeneity, timeliness and efficienc.

Development of the validation of the performance of evacuation teams

STEP
 Evaluation and quality control

Analysis of the proposed indicators, for their incorporation into the final report,

Identification of strengths, weaknesses, opportunities and threats,

Implementation of recommendations, lessons learned and good practices.

Compliance with indicators of effectiveness, homogeneity, timeliness, and efficiency, evaluating the activities carried out before, during, and after.

Thanks!!

- Health workers of the region
- Regina Duron, CIM
- Carilu Pacis, CIM
- Claudia Ortiz, CIM
www.paho.org/immunization

OTHER RECOMMENDATIONS for vaccination against measles and rubella

1. Travelers: prior departure, during the trip, and upon returning.
2. Clinicians and health care providers
3. Persons and institutions in contact with travelers, before and/or after trip
4. Contact tracing of confirmed measles cases

OTHER RECOMMENDATIONS for vaccination against measles and rubella

5. Identify the route of displacement of the case in the period of transmissibility for guiding vaccination activities
6. Implement Rapid Vaccination Monitoring (MRV) in the area of residence where the case lives
7. Conduct selective mop up (if MRV was performed) or indiscriminate mop up (if MRV was not performed).
8. Diseminate a national and international epidemiological alert (IHR) once a case is confirmed to prepare a strong vaccination interventions

OTHER RECOMMENDATIONS for vaccination against measles and rubella

9. Implement vaccination intensification to close immunity gaps in high-risk municipalities and immigrant transit populations
